↓ Skip to main content

Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons

Overview of attention for article published in Frontiers in Neurorobotics, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
111 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons
Published in
Frontiers in Neurorobotics, February 2018
DOI 10.3389/fnbot.2018.00005
Pubmed ID
Authors

Clemente Lauretti, Francesca Cordella, Anna Lisa Ciancio, Emilio Trigili, Jose Maria Catalan, Francisco Javier Badesa, Simona Crea, Silvio Marcello Pagliara, Silvia Sterzi, Nicola Vitiello, Nicolas Garcia Aracil, Loredana Zollo

Abstract

The reference joint position of upper-limb exoskeletons is typically obtained by means of Cartesian motion planners and inverse kinematics algorithms with the inverse Jacobian; this approach allows exploiting the available Degrees of Freedom (i.e. DoFs) of the robot kinematic chain to achieve the desired end-effector pose; however, if used to operate non-redundant exoskeletons, it does not ensure that anthropomorphic criteria are satisfied in the whole human-robot workspace. This paper proposes a motion planning system, based on Learning by Demonstration, for upper-limb exoskeletons that allow successfully assisting patients during Activities of Daily Living (ADLs) in unstructured environment, while ensuring that anthropomorphic criteria are satisfied in the whole human-robot workspace. The motion planning system combines Learning by Demonstration with the computation of Dynamic Motion Primitives and machine learning techniques to construct task- and patient-specific joint trajectories based on the learnt trajectories. System validation was carried out in simulation and in a real setting with a 4-DoF upper-limb exoskeleton, a 5-DoF wrist-hand exoskeleton and four patients with Limb Girdle Muscular Dystrophy. Validation was addressed to (i) compare the performance of the proposed motion planning with traditional methods; (ii) assess the generalization capabilities of the proposed method with respect to the environment variability. Three ADLs were chosen to validate the system: drinking, pouring and lifting a light sphere. The achieved results showed a 100% success rate in the task fulfillment, with a high level of generalization with respect to the environment variability. Moreover, an anthropomorphic configuration of the exoskeleton is always ensured.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 111 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 111 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 17%
Student > Master 17 15%
Researcher 14 13%
Student > Doctoral Student 9 8%
Student > Bachelor 7 6%
Other 14 13%
Unknown 31 28%
Readers by discipline Count As %
Engineering 41 37%
Computer Science 8 7%
Unspecified 6 5%
Medicine and Dentistry 6 5%
Nursing and Health Professions 2 2%
Other 13 12%
Unknown 35 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 March 2018.
All research outputs
#14,376,243
of 23,025,074 outputs
Outputs from Frontiers in Neurorobotics
#349
of 880 outputs
Outputs of similar age
#187,866
of 330,325 outputs
Outputs of similar age from Frontiers in Neurorobotics
#7
of 15 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 880 research outputs from this source. They receive a mean Attention Score of 4.1. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,325 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.