↓ Skip to main content

Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model

Overview of attention for article published in Frontiers in Neurorobotics, April 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
121 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model
Published in
Frontiers in Neurorobotics, April 2018
DOI 10.3389/fnbot.2018.00016
Pubmed ID
Authors

Shaowei Yao, Yu Zhuang, Zhijun Li, Rong Song

Abstract

Various rehabilitation robots have been employed to recover the motor function of stroke patients. To improve the effect of rehabilitation, robots should promote patient participation and provide compliant assistance. This paper proposes an adaptive admittance control scheme (AACS) consisting of an admittance filter, inner position controller, and electromyography (EMG)-driven musculoskeletal model (EDMM). The admittance filter generates the subject's intended motion according to the joint torque estimated by the EDMM. The inner position controller tracks the intended motion, and its parameters are adjusted according to the estimated joint stiffness. Eight healthy subjects were instructed to wear the ankle exoskeleton robot, and they completed a series of sinusoidal tracking tasks involving ankle dorsiflexion and plantarflexion. The robot was controlled by the AACS and a non-adaptive admittance control scheme (NAACS) at four fixed parameter levels. The tracking performance was evaluated using the jerk value, position error, interaction torque, and EMG levels of the tibialis anterior (TA) and gastrocnemius (GAS). For the NAACS, the jerk value and position error increased with the parameter levels, and the interaction torque and EMG levels of the TA tended to decrease. In contrast, the AACS could maintain a moderate jerk value, position error, interaction torque, and TA EMG level. These results demonstrate that the AACS achieves a good tradeoff between accurate tracking and compliant assistance because it can produce a real-time response to stiffness changes in the ankle joint. The AACS can alleviate the conflict between accurate tracking and compliant assistance and has potential for application in robot-assisted rehabilitation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 121 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 121 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 13%
Student > Master 14 12%
Student > Bachelor 12 10%
Researcher 11 9%
Student > Doctoral Student 10 8%
Other 12 10%
Unknown 46 38%
Readers by discipline Count As %
Engineering 47 39%
Computer Science 6 5%
Nursing and Health Professions 6 5%
Medicine and Dentistry 5 4%
Sports and Recreations 4 3%
Other 4 3%
Unknown 49 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2018.
All research outputs
#18,601,965
of 23,041,514 outputs
Outputs from Frontiers in Neurorobotics
#586
of 881 outputs
Outputs of similar age
#255,537
of 329,244 outputs
Outputs of similar age from Frontiers in Neurorobotics
#11
of 18 outputs
Altmetric has tracked 23,041,514 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 881 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,244 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.