↓ Skip to main content

Species-dependent differences of embryonic stem cell-derived neural stem cells after Interferon gamma treatment

Overview of attention for article published in Frontiers in Cellular Neuroscience, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Species-dependent differences of embryonic stem cell-derived neural stem cells after Interferon gamma treatment
Published in
Frontiers in Cellular Neuroscience, January 2012
DOI 10.3389/fncel.2012.00052
Pubmed ID
Authors

Janine Walter, Marcel Dihné

Abstract

Pluripotent stem cell (pSC)-derived, neural stem cells (NSCs) are actually extensively explored in the field of neuroregeneration and to clarify disease mechanisms or model neurological diseases in vitro. Regarding the latter, proliferation and differentiation of pSC-derived NSCs are investigated under the influence of a variety of different substances among them key players of inflammation. However, results generated on a murine genetic background are not always representative for the human situation which increasingly leads to the application of human cell culture systems derived from human pSCs. We investigated here, if the recently described interferon gamma (IFNγ)-induced dysregulated neural phenotype characterized by simultaneous expression of glial and neuronal markers on murine NSCs (Walter et al., 2011, 2012) can also be found on a human genetic background. For this purpose, we performed experiments with human embryonic stem cell-derived NSCs. We could show that the IFNγ-induced dysregulated neural phenotype cannot be induced in human NSCs. This difference occurs, although typical genes like signal transducers and activators of transcription 1 (Stat 1) or interferon regulatory factor 9 (IRF-9) are similarly regulated by IFNγ in both, murine and human populations. These results illustrate that fundamental differences between murine and human neural populations exist in vitro, independent of anatomical system-related properties.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 27%
Other 2 13%
Student > Ph. D. Student 2 13%
Student > Doctoral Student 1 7%
Researcher 1 7%
Other 1 7%
Unknown 4 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 40%
Biochemistry, Genetics and Molecular Biology 2 13%
Arts and Humanities 1 7%
Medicine and Dentistry 1 7%
Engineering 1 7%
Other 0 0%
Unknown 4 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2012.
All research outputs
#15,256,044
of 22,685,926 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,643
of 4,205 outputs
Outputs of similar age
#163,201
of 244,123 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#16
of 42 outputs
Altmetric has tracked 22,685,926 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,205 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,123 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.