↓ Skip to main content

Role of hormones and neurosteroids in epileptogenesis

Overview of attention for article published in Frontiers in Cellular Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
66 Dimensions

Readers on

mendeley
153 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of hormones and neurosteroids in epileptogenesis
Published in
Frontiers in Cellular Neuroscience, January 2013
DOI 10.3389/fncel.2013.00115
Pubmed ID
Authors

Doodipala Samba Reddy

Abstract

This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 153 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 2%
Unknown 150 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 17%
Student > Bachelor 20 13%
Researcher 19 12%
Other 12 8%
Professor > Associate Professor 11 7%
Other 29 19%
Unknown 36 24%
Readers by discipline Count As %
Medicine and Dentistry 34 22%
Neuroscience 25 16%
Agricultural and Biological Sciences 22 14%
Psychology 5 3%
Pharmacology, Toxicology and Pharmaceutical Science 5 3%
Other 21 14%
Unknown 41 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 April 2019.
All research outputs
#12,685,958
of 22,715,151 outputs
Outputs from Frontiers in Cellular Neuroscience
#1,542
of 4,213 outputs
Outputs of similar age
#150,733
of 280,748 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#67
of 203 outputs
Altmetric has tracked 22,715,151 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,213 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,748 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 203 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.