↓ Skip to main content

Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS

Overview of attention for article published in Frontiers in Cellular Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
127 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS
Published in
Frontiers in Cellular Neuroscience, January 2013
DOI 10.3389/fncel.2013.00274
Pubmed ID
Authors

Emiliano Trias, Pablo Díaz-Amarilla, Silvia Olivera-Bravo, Eugenia Isasi, Derek A. Drechsel, Nathan Lopez, C. Samuel Bradford, Kyle E. Ireton, Joseph S. Beckman, Luis Barbeito

Abstract

Microglia and reactive astrocytes accumulate in the spinal cord of rats expressing the Amyotrophic lateral sclerosis (ALS)-linked SOD1 (G93A) mutation. We previously reported that the rapid progression of paralysis in ALS rats is associated with the appearance of proliferative astrocyte-like cells that surround motor neurons. These cells, designated as Aberrant Astrocytes (AbA cells) because of their atypical astrocytic phenotype, exhibit high toxicity to motor neurons. However, the cellular origin of AbA cells remains unknown. Because AbA cells are labeled with the proliferation marker Ki67, we analyzed the phenotypic makers of proliferating glial cells that surround motor neurons by immunohistochemistry. The number of Ki67 (+)AbA cells sharply increased in symptomatic rats, displaying large cell bodies with processes embracing motor neurons. Most were co-labeled with astrocytic marker GFAP concurrently with the microglial markers Iba1 and CD163. Cultures of spinal cord prepared from symptomatic SOD1 (G93A) rats yielded large numbers of microglia expressing Iba1, CD11b, and CD68. Cells sorted for CD11b expression by flow cytometry transformed into AbA cells within two weeks. During these two weeks, the expression of microglial markers largely disappeared, while GFAP and S100β expression increased. The phenotypic transition to AbA cells was stimulated by forskolin. These findings provide evidence for a subpopulation of proliferating microglial cells in SOD1 (G93A) rats that undergo a phenotypic transition into AbA cells after onset of paralysis that may promote the fulminant disease progression. These cells could be a therapeutic target for slowing paralysis progression in ALS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 127 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 2 2%
Uruguay 1 <1%
France 1 <1%
Canada 1 <1%
Unknown 122 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 23%
Researcher 19 15%
Student > Doctoral Student 11 9%
Student > Bachelor 10 8%
Student > Master 10 8%
Other 21 17%
Unknown 27 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 38 30%
Neuroscience 28 22%
Medicine and Dentistry 14 11%
Biochemistry, Genetics and Molecular Biology 9 7%
Nursing and Health Professions 2 2%
Other 3 2%
Unknown 33 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 October 2014.
All research outputs
#14,203,052
of 22,769,322 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,194
of 4,229 outputs
Outputs of similar age
#167,730
of 280,936 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#99
of 203 outputs
Altmetric has tracked 22,769,322 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,229 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,936 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 203 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.