↓ Skip to main content

A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals

Overview of attention for article published in Frontiers in Cellular Neuroscience, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals
Published in
Frontiers in Cellular Neuroscience, September 2014
DOI 10.3389/fncel.2014.00286
Pubmed ID
Authors

Tsunehiko Kohashi, Bruce A. Carlson

Abstract

Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbrain electrosensory neurons in mormyrid fish, in which the processing of temporal intervals between communication signals can be studied in a reduced in vitro preparation. Mormyrids communicate by varying interpulse intervals (IPIs) between electric pulses. Within the midbrain posterior exterolateral nucleus (ELp), the temporal patterns of afferent spike trains are filtered to establish single-neuron IPI tuning. We performed whole-cell recording from ELp neurons in a whole-brain preparation and examined the relationship between intrinsic excitability and IPI tuning. We found that spike frequency adaptation of ELp neurons was highly variable. Postsynaptic potentials (PSPs) of strongly adapting (phasic) neurons were more sharply tuned to IPIs than weakly adapting (tonic) neurons. Further, the synaptic filtering of IPIs by tonic neurons was more faithfully converted into variation in spiking output, particularly at short IPIs. Pharmacological manipulation under current- and voltage-clamp revealed that tonic firing is mediated by a fast, large-conductance Ca(2+)-activated K(+) (KCa) current (BK) that speeds up action potential repolarization. These results suggest that BK currents can shape the temporal filtering of sensory inputs by modifying both synaptic responses and PSP-to-spike conversion. Slow SK-type KCa currents have previously been implicated in temporal processing. Thus, both fast and slow KCa currents can fine-tune temporal selectivity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 25 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 15%
Student > Doctoral Student 3 12%
Student > Bachelor 3 12%
Student > Ph. D. Student 3 12%
Student > Master 3 12%
Other 3 12%
Unknown 7 27%
Readers by discipline Count As %
Neuroscience 7 27%
Agricultural and Biological Sciences 7 27%
Environmental Science 1 4%
Biochemistry, Genetics and Molecular Biology 1 4%
Medicine and Dentistry 1 4%
Other 1 4%
Unknown 8 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2014.
All research outputs
#15,305,567
of 22,763,032 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,656
of 4,226 outputs
Outputs of similar age
#144,346
of 249,473 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#35
of 82 outputs
Altmetric has tracked 22,763,032 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,226 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 249,473 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 82 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.