↓ Skip to main content

Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice

Overview of attention for article published in Frontiers in Cellular Neuroscience, November 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice
Published in
Frontiers in Cellular Neuroscience, November 2014
DOI 10.3389/fncel.2014.00353
Pubmed ID
Authors

Tobias Mühling, Johanna Duda, Jochen H. Weishaupt, Albert C. Ludolph, Birgit Liss

Abstract

Disturbances in Ca(2+) homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS), a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca(2+) homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs) from a common ALS mouse model, the endstage superoxide dismutase SOD1(G93A) transgenic mouse, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca(2+) uptake capacity and elevated Ca(2+) extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca(2+) transporters in individual, choline-acetyltransferase (ChAT) positive hMNs from wildtype (WT) and endstage SOD1(G93A) mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1(G93A) mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca(2+) transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca(2+) transporters MCU/MICU1, Letm1, and UCP2 in remaining hMNs from endstage SOD1(G93A) mice. These higher expression-levels of mitochondrial Ca(2+) transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na(+)/Ca(2+) exchanger NCX1 were also about 2-fold higher in hMNs from SOD1(G93A) mice. Thus, pharmacological stimulation of Ca(2+) transporters in highly vulnerable hMNs might offer a neuroprotective strategy for ALS.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 33 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 24%
Researcher 7 21%
Student > Bachelor 5 15%
Professor 4 12%
Student > Doctoral Student 2 6%
Other 4 12%
Unknown 4 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 24%
Biochemistry, Genetics and Molecular Biology 5 15%
Medicine and Dentistry 5 15%
Neuroscience 4 12%
Engineering 2 6%
Other 3 9%
Unknown 7 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 December 2014.
All research outputs
#20,245,139
of 22,772,779 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,562
of 4,230 outputs
Outputs of similar age
#215,372
of 258,054 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#55
of 80 outputs
Altmetric has tracked 22,772,779 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,230 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 258,054 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.