↓ Skip to main content

Real-time imaging of bHLH transcription factors reveals their dynamic control in the multipotency and fate choice of neural stem cells

Overview of attention for article published in Frontiers in Cellular Neuroscience, August 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Real-time imaging of bHLH transcription factors reveals their dynamic control in the multipotency and fate choice of neural stem cells
Published in
Frontiers in Cellular Neuroscience, August 2015
DOI 10.3389/fncel.2015.00288
Pubmed ID
Authors

Itaru Imayoshi, Fumiyoshi Ishidate, Ryoichiro Kageyama

Abstract

The basic-helix-loop-helix (bHLH) transcription factors Ascl1/Mash1, Hes1, and Olig2 regulate the fate choice of neurons, astrocytes, and oligodendrocytes, respectively; however, these factors are coexpressed in self-renewing multipotent neural stem cells (NSCs) even before cell fate determination. This fact raises the possibility that these fate determination factors are differentially expressed between self-renewing and differentiating NSCs with unique expression dynamics. Real-time imaging analysis utilizing fluorescent proteins is a powerful strategy for monitoring expression dynamics. Fusion with fluorescent reporters makes it possible to analyze the dynamic behavior of specific proteins in living cells. However, it is technically challenging to conduct long-term imaging of proteins, particularly those with low expression levels, because a high-sensitivity and low-noise imaging system is required, and very often bleaching of fluorescent proteins and cell toxicity by prolonged laser exposure are problematic. Furthermore, to analyze the functional roles of the dynamic expression of cellular proteins, it is essential to image reporter fusion proteins that are expressed at comparable levels to their endogenous expression. In this review, we introduce our recent reports about the dynamic control of bHLH transcription factors in multipotency and fate choice of NSCs, focusing on real-time imaging of fluorescent reporters fused with bHLH transcription factors. Our imaging results indicate that bHLH transcription factors are expressed in an oscillatory manner by NSCs, and that one of them becomes dominant during fate choice. We propose that the multipotent state of NSCs correlates with the oscillatory expression of several bHLH transcription factors, whereas the differentiated state correlates with the sustained expression of a single bHLH transcription factor.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 93 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 31%
Student > Master 13 14%
Researcher 11 12%
Professor > Associate Professor 7 8%
Student > Bachelor 6 6%
Other 14 15%
Unknown 13 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 33 35%
Agricultural and Biological Sciences 26 28%
Neuroscience 7 8%
Medicine and Dentistry 3 3%
Immunology and Microbiology 2 2%
Other 7 8%
Unknown 15 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 August 2015.
All research outputs
#20,284,384
of 22,818,766 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,572
of 4,242 outputs
Outputs of similar age
#220,970
of 264,230 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#108
of 131 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,242 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,230 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.