↓ Skip to main content

Stretch induced hyperexcitability of mice callosal pathway

Overview of attention for article published in Frontiers in Cellular Neuroscience, August 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stretch induced hyperexcitability of mice callosal pathway
Published in
Frontiers in Cellular Neuroscience, August 2015
DOI 10.3389/fncel.2015.00292
Pubmed ID
Authors

Anthony Fan, Kevin A. Stebbings, Daniel A. Llano, Taher Saif

Abstract

Memory and learning are thought to result from changes in synaptic strength. Previous studies on synaptic physiology in brain slices have traditionally been focused on biochemical processes. Here, we demonstrate with experiments on mouse brain slices that central nervous system plasticity is also sensitive to mechanical stretch. This is important, given the host of clinical conditions involving changes in mechanical tension on the brain, and the normal role that mechanical tension plays in brain development. A novel platform is developed to investigate neural responses to mechanical stretching. Flavoprotein autofluoresence (FA) imaging was employed for measuring neural activity. We observed that synaptic excitability substantially increases after a small (2.5%) stretch was held for 10 min and released. The increase is accumulative, i.e., multiple stretch cycles further increase the excitability. We also developed analytical tools to quantify the spatial spread and response strength. Results show that the spatial spread is less stable in slices undergoing the stretch-unstretch cycle. FA amplitude and activation rate decrease as excitability increases in stretch cases but not in electrically enhanced cases. These results collectively demonstrate that a small stretch in physiological range can modulate neural activities significantly, suggesting that mechanical events can be employed as a novel tool for the modulation of neural plasticity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 12%
Student > Master 3 12%
Student > Doctoral Student 2 8%
Student > Postgraduate 2 8%
Professor > Associate Professor 2 8%
Other 4 16%
Unknown 9 36%
Readers by discipline Count As %
Neuroscience 5 20%
Agricultural and Biological Sciences 4 16%
Engineering 3 12%
Medicine and Dentistry 1 4%
Unknown 12 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 August 2015.
All research outputs
#18,420,033
of 22,818,766 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,249
of 4,242 outputs
Outputs of similar age
#189,931
of 264,147 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#96
of 131 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,242 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,147 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.