↓ Skip to main content

Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation

Overview of attention for article published in Frontiers in Cellular Neuroscience, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation
Published in
Frontiers in Cellular Neuroscience, August 2015
DOI 10.3389/fncel.2015.00294
Pubmed ID
Authors

Mingju Cao, Marina Cortes, Craig S. Moore, Soo Yuen Leong, Lucien D. Durosier, Patrick Burns, Gilles Fecteau, Andre Desrochers, Roland N. Auer, Luis B. Barreiro, Jack P. Antel, Martin G. Frasch

Abstract

Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. Lipopolysaccharide (LPS) or saline were administered intravenously to non-anesthetized chronically instrumented near-term fetal sheep to model fetal inflammation in vivo. Microglia were then isolated from in vivo LPS and saline (naïve) exposed animals. To mimic the second hit of neuroinflammation, these microglia were then re-exposed to LPS in vitro. Cytokine responses were measured in vivo and subsequently in vitro in the primary microglia cultures derived from these animals. We sequenced the whole transcriptome of naïve and second hit microglia and profiled their genetic expression to define molecular pathways disrupted during neuroinflammation. In vivo LPS exposure resulted in IL-6 increase in fetal plasma 3 h post LPS exposure. Even though not histologically apparent, microglia acquired a pro-inflammatory phenotype in vivo that was sustained and amplified in vitro upon second hit LPS exposure as measured by IL-1β response in vitro and RNAseq analyses. While NFKB and Jak-Stat inflammatory pathways were up regulated in naïve microglia, heme oxygenase 1 (HMOX1) and Fructose-1,6-bisphosphatase (FBP) genes were uniquely differentially expressed in the second hit microglia. Compared to the microglia exposed to LPS in vitro only, the transcriptome of the in vivo LPS pre-exposed microglia showed a diminished differential gene expression in inflammatory and metabolic pathways prior and upon re-exposure to LPS in vitro. Notably, this desensitization response was also observed in histone deacetylases (HDAC) 1, 2, 4, and 6. Microglial calreticulin/LRP genes implicated in microglia-neuronal communication relevant for the neuronal development were up regulated in second hit microglia. We identified a unique HMOX1 down and FBP (up) phenotype of microglia exposed to the double-hit suggesting interplay of inflammatory and metabolic pathways. Our findings suggest that epigenetic mechanisms mediate this immunological and metabolic memory of the prior inflammatory insult relevant to neuronal development and provide new therapeutic targets for early postnatal intervention to prevent brain injury.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 59 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 25%
Researcher 10 17%
Student > Master 8 13%
Student > Bachelor 6 10%
Professor 3 5%
Other 5 8%
Unknown 13 22%
Readers by discipline Count As %
Neuroscience 14 23%
Biochemistry, Genetics and Molecular Biology 9 15%
Agricultural and Biological Sciences 8 13%
Medicine and Dentistry 5 8%
Computer Science 2 3%
Other 8 13%
Unknown 14 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 August 2015.
All research outputs
#15,340,815
of 22,818,766 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,665
of 4,242 outputs
Outputs of similar age
#154,573
of 264,230 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#75
of 131 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,242 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,230 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.