↓ Skip to main content

Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice

Overview of attention for article published in Frontiers in Cellular Neuroscience, October 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Readers on

mendeley
81 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice
Published in
Frontiers in Cellular Neuroscience, October 2015
DOI 10.3389/fncel.2015.00372
Pubmed ID
Authors

Francesco Tamagnini, Janet Novelia, Talitha L. Kerrigan, Jon T. Brown, Krasimira Tsaneva-Atanasova, Andrew D. Randall

Abstract

Amyloidopathy involves the accumulation of insoluble amyloid β (Aβ) species in the brain's parenchyma and is a key histopathological hallmark of Alzheimer's disease (AD). Work on transgenic mice that overexpress Aβ suggests that elevated Aβ levels in the brain are associated with aberrant epileptiform activity and increased intrinsic excitability (IE) of CA1 hippocampal neurons. In this study we examined if similar changes could be observed in hippocampal CA1 pyramidal neurons from aged PDAPP mice (20-23 month old, Indiana mutation: V717F on APP gene) compared to their age-matched wild-type littermate controls. Whole-cell current clamp recordings revealed that sub-threshold intrinsic properties, such as input resistance, resting membrane potential and hyperpolarization activated "sag" were unaffected, but capacitance was significantly decreased in the transgenic animals. No differences between genotypes were observed in the overall number of action potentials (AP) elicited by 500 ms supra-threshold current stimuli. PDAPP neurons, however, exhibited higher instantaneous firing frequencies after accommodation in response to high intensity current injections. The AP waveform was narrower and shorter in amplitude in PDAPP mice: these changes, according to our in silico model of a CA1/3 pyramidal neuron, depended on the respective increase and reduction of K(+) and Na(+) voltage-gated channels maximal conductances. Finally, the after-hyperpolarization, seen after the first AP evoked by a +300 pA current injection and after 50 Hz AP bursts, was more pronounced in PDAPP mice. These data show that Aβ-overexpression in aged mice altered the capacitance, the neuronal firing and the AP waveform of CA1 pyramidal neurons. Some of these findings are consistent with previous work on younger PDAPP; they also show important differences that can be potentially ascribed to the interaction between amyloidopathy and ageing. Such a change of IE properties over time underlies that the increased incidence of seizure observed in AD patients might rely on different mechanistic pathways during progression of the disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 81 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 81 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 27%
Student > Master 17 21%
Researcher 13 16%
Student > Doctoral Student 5 6%
Student > Bachelor 3 4%
Other 7 9%
Unknown 14 17%
Readers by discipline Count As %
Neuroscience 31 38%
Agricultural and Biological Sciences 15 19%
Medicine and Dentistry 5 6%
Psychology 3 4%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Other 9 11%
Unknown 16 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 November 2015.
All research outputs
#2,880,636
of 22,830,751 outputs
Outputs from Frontiers in Cellular Neuroscience
#566
of 4,247 outputs
Outputs of similar age
#41,730
of 279,403 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#17
of 119 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,247 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,403 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.