↓ Skip to main content

A Novel Method for the Description of Voltage-Gated Ionic Currents Based on Action Potential Clamp Results—Application to Hippocampal Mossy Fiber Boutons

Overview of attention for article published in Frontiers in Cellular Neuroscience, January 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Novel Method for the Description of Voltage-Gated Ionic Currents Based on Action Potential Clamp Results—Application to Hippocampal Mossy Fiber Boutons
Published in
Frontiers in Cellular Neuroscience, January 2016
DOI 10.3389/fncel.2015.00514
Pubmed ID
Authors

John R. Clay

Abstract

Action potential clamp (AP-clamp) recordings of the delayed rectifier K(+) current I K and the fast-activated Na(+) current I Na in rat hippocampal mossy fiber boutons (MFBs) are analyzed using a computational technique recently reported. The method is implemented using a digitized AP from an MFB and computationally applying that data set to published models of I K and I Na. These numerical results are compared with experimental AP-clamp recordings. The I Na result is consistent with experiment; the I K result is not. The difficulty with the I K model concerns the fully activated current-voltage relation, which is described here by the Goldman-Hodgkin-Katz dependence on the driving force (V-E K) rather than (V-E K) itself, the standard model for this aspect of ion permeation. That revision leads to the second-a much steeper voltage dependent activation curve for I K than the one obtained from normalization of a family of I K records by (V-E K). The revised model provides an improved description of the AP-clamp measurement of I K in MFBs compared with the standard approach. The method described here is general. It can be used to test models of ionic currents in any excitable cell. In this way it provides a novel approach to the relationship between ionic current and membrane excitability in neurons.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 100%
Readers by discipline Count As %
Neuroscience 2 67%
Agricultural and Biological Sciences 1 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2016.
All research outputs
#20,300,248
of 22,837,982 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,582
of 4,250 outputs
Outputs of similar age
#332,098
of 395,522 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#85
of 103 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,250 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,522 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 103 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.