↓ Skip to main content

Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs

Overview of attention for article published in Frontiers in Cellular Neuroscience, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs
Published in
Frontiers in Cellular Neuroscience, March 2016
DOI 10.3389/fncel.2016.00063
Pubmed ID
Authors

Paul Scholz, Julia Mohrhardt, Fabian Jansen, Benjamin Kalbe, Claudia Haering, Katharina Klasen, Hanns Hatt, Sabrina Osterloh

Abstract

It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 21%
Student > Bachelor 5 18%
Researcher 4 14%
Professor 2 7%
Student > Master 2 7%
Other 2 7%
Unknown 7 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 29%
Biochemistry, Genetics and Molecular Biology 5 18%
Neuroscience 3 11%
Nursing and Health Professions 1 4%
Immunology and Microbiology 1 4%
Other 1 4%
Unknown 9 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 March 2016.
All research outputs
#20,317,110
of 22,858,915 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,585
of 4,254 outputs
Outputs of similar age
#254,985
of 300,926 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#77
of 93 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,254 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,926 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 93 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.