↓ Skip to main content

Caffeine Taste Signaling in Drosophila Larvae

Overview of attention for article published in Frontiers in Cellular Neuroscience, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Caffeine Taste Signaling in Drosophila Larvae
Published in
Frontiers in Cellular Neuroscience, August 2016
DOI 10.3389/fncel.2016.00193
Pubmed ID
Authors

Anthi A. Apostolopoulou, Saskia Köhn, Bernhard Stehle, Michael Lutz, Alexander Wüst, Lorena Mazija, Anna Rist, C. Giovanni Galizia, Alja Lüdke, Andreas S. Thum

Abstract

The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 17%
Student > Ph. D. Student 9 17%
Student > Bachelor 8 15%
Student > Master 6 11%
Lecturer > Senior Lecturer 2 4%
Other 3 6%
Unknown 17 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 28%
Neuroscience 10 19%
Biochemistry, Genetics and Molecular Biology 6 11%
Nursing and Health Professions 1 2%
Environmental Science 1 2%
Other 2 4%
Unknown 19 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2016.
All research outputs
#13,661,887
of 23,577,654 outputs
Outputs from Frontiers in Cellular Neuroscience
#1,818
of 4,388 outputs
Outputs of similar age
#195,289
of 364,114 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#19
of 52 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,388 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 364,114 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.