↓ Skip to main content

Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells

Overview of attention for article published in Frontiers in Cellular Neuroscience, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells
Published in
Frontiers in Cellular Neuroscience, September 2016
DOI 10.3389/fncel.2016.00217
Pubmed ID
Authors

Daniel Cortés, Yolanda Robledo-Arratia, Ricardo Hernández-Martínez, Itzel Escobedo-Ávila, José Bargas, Iván Velasco

Abstract

Embryonic stem cells (ESC) are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons (MNs) has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive. Here, we developed double-transgenic lines of mouse ESC (mESC) that constitutively produce glial cell line-derived neurotrophic factor (GDNF) and also contain a GFP reporter, driven by HB9, which is expressed only by postmitotic MNs. After lentiviral transduction, ESC lines integrated and expressed the human GDNF (hGDNF) gene without altering pluripotency markers before differentiation. Further, GDNF-ESC showed significantly higher spontaneous release of this neurotrophin to the medium, when compared to controls. To study MN induction, control and GDNF cell lines were grown as embryoid bodies and stimulated with retinoic acid and Sonic Hedgehog. In GDNF-overexpressing cells, a significant increase of proliferative Olig2+ precursors, which are specified as spinal MNs, was found. Accordingly, GDNF increases the yield of cells with the pan motor neuronal markers HB9, monitored by GFP expression, and Isl1. At terminal differentiation, almost all differentiated neurons express phenotypic markers of MNs in GDNF cultures, with lower proportions in control cells. To test if the effects of GDNF were present at early differentiation stages, exogenous recombinant hGDNF was added to control ESC, also resulting in enhanced MN differentiation. This effect was abolished by the co-addition of neutralizing anti-GDNF antibodies, strongly suggesting that differentiating ESC are responsive to GDNF. Using the HB9::GFP reporter, MNs were selected for electrophysiological recordings. MNs differentiated from GDNF-ESC, compared to control MNs, showed greater electrophysiological maturation, characterized by increased numbers of evoked action potentials (APs), as well as by the appearance of rebound APs, sag inward rectification, spike frequency adaptation and spontaneous synaptic potentials. Upon challenge with kainate, GDNF-overexpressing cells are more resistant to excitotoxicity than control MNs. Together these data indicate that GDNF promotes proliferation of MN-committed precursors, promotes neuronal differentiation, enhances maturation, and confers neuroprotection. GDNF-expressing ESC can be useful in studies of development and disease.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 22%
Student > Bachelor 7 19%
Researcher 6 17%
Student > Master 6 17%
Student > Doctoral Student 3 8%
Other 5 14%
Unknown 1 3%
Readers by discipline Count As %
Neuroscience 10 28%
Biochemistry, Genetics and Molecular Biology 7 19%
Agricultural and Biological Sciences 7 19%
Immunology and Microbiology 2 6%
Engineering 2 6%
Other 5 14%
Unknown 3 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2016.
All research outputs
#20,341,859
of 22,888,307 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,586
of 4,256 outputs
Outputs of similar age
#279,832
of 322,308 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#39
of 62 outputs
Altmetric has tracked 22,888,307 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,256 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,308 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.