↓ Skip to main content

Enhanced Oxidative Stress Is Responsible for TRPV4-Induced Neurotoxicity

Overview of attention for article published in Frontiers in Cellular Neuroscience, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhanced Oxidative Stress Is Responsible for TRPV4-Induced Neurotoxicity
Published in
Frontiers in Cellular Neuroscience, October 2016
DOI 10.3389/fncel.2016.00232
Pubmed ID
Authors

Zhiwen Hong, Yujing Tian, Yibiao Yuan, Mengwen Qi, Yingchun Li, Yimei Du, Lei Chen, Ling Chen

Abstract

Transient receptor potential vanilloid 4 (TRPV4) has been reported to be responsible for neuronal injury in pathological conditions. Excessive oxidative stress can lead to neuronal damage, and activation of TRPV4 increases the production of reactive oxygen species (ROS) and nitric oxide (NO) in many types of cells. The present study explored whether TRPV4-induced neuronal injury is mediated through enhancing oxidative stress. We found that intracerebroventricular injection of the TRPV4 agonist GSK1016790A increased the content of methane dicarboxylic aldehyde (MDA) and NO in the hippocampus, which was blocked by administration of the TRPV4 specific antagonist HC-067047. The activities of catalase (CAT) and glutathione peroxidase (GSH-Px) were decreased by GSK1016790A, whereas the activity of superoxide dismutase (SOD) remained unchanged. Moreover, the protein level and activity of neuronal nitric oxide synthase (nNOS) were increased by GSK1016790A, and the GSK1016790A-induced increase in NO content was blocked by an nNOS specific antagonist ARL-17477. The GSK1016790A-induced modulations of CAT, GSH-Px and nNOS activities and the protein level of nNOS were significantly inhibited by HC-067047. Finally, GSK1016790A-induced neuronal death and apoptosis in the hippocampal CA1 area were markedly attenuated by administration of a ROS scavenger Trolox or ARL-17477. We conclude that activation of TRPV4 enhances oxidative stress by inhibiting CAT and GSH-Px and increasing nNOS, which is responsible, at least in part, for TRPV4-induced neurotoxicity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 18%
Student > Ph. D. Student 4 14%
Professor > Associate Professor 4 14%
Professor 3 11%
Student > Master 2 7%
Other 4 14%
Unknown 6 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 14%
Agricultural and Biological Sciences 4 14%
Neuroscience 3 11%
Chemistry 2 7%
Mathematics 1 4%
Other 5 18%
Unknown 9 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 October 2016.
All research outputs
#14,864,294
of 22,893,031 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,402
of 4,257 outputs
Outputs of similar age
#189,286
of 315,552 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#30
of 69 outputs
Altmetric has tracked 22,893,031 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,257 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,552 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 69 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.