↓ Skip to main content

Neuronal Polarity in the Embryonic Mammalian Cerebral Cortex

Overview of attention for article published in Frontiers in Cellular Neuroscience, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neuronal Polarity in the Embryonic Mammalian Cerebral Cortex
Published in
Frontiers in Cellular Neuroscience, June 2017
DOI 10.3389/fncel.2017.00163
Pubmed ID
Authors

Elif Kon, Alexia Cossard, Yves Jossin

Abstract

The cerebral cortex is composed of billions of neurons that can grossly be subdivided into two broad classes: inhibitory GABAergic interneurons and excitatory glutamatergic neurons. The majority of cortical neurons in mammals are the excitatory type and they are the main focus of this review article. Like many of the cells in multicellular organisms, fully differentiated neurons are both morphologically and functionally polarized. However, they go through several changes in polarity before reaching this final mature differentiated state. Neurons are derived from polarized neuronal progenitor/stem cells and their commitment to neuronal fate is decided by cellular and molecular asymmetry during their last division in the neurogenic zone. They migrate from their birthplace using so-called multipolar migration, during which they switch direction of movement several times, and repolarize for bipolar migration when the axon is specified. Therefore, neurons have to break their previous symmetry, change their morphology and adequately respond to polarizing signals during migration in order to reach the correct position in the cortex and start making connections. Finally, the dendritic tree is elaborated and the axon/dendrite morphological polarity is set. Here we will describe the function, establishment and maintenance of polarity during the different developmental steps starting from neural stem cell (NSC) division, neuronal migration and axon specification at embryonic developmental stages.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 91 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 25 27%
Student > Ph. D. Student 20 22%
Student > Bachelor 9 10%
Student > Master 9 10%
Student > Doctoral Student 5 5%
Other 9 10%
Unknown 14 15%
Readers by discipline Count As %
Neuroscience 27 30%
Agricultural and Biological Sciences 23 25%
Biochemistry, Genetics and Molecular Biology 15 16%
Medicine and Dentistry 6 7%
Environmental Science 1 1%
Other 1 1%
Unknown 18 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 June 2017.
All research outputs
#14,942,299
of 22,982,639 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,406
of 4,263 outputs
Outputs of similar age
#173,602
of 291,527 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#58
of 99 outputs
Altmetric has tracked 22,982,639 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,263 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 291,527 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 99 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.