↓ Skip to main content

A Variant of the Autophagy-Related 5 Gene Is Associated with Child Cerebral Palsy

Overview of attention for article published in Frontiers in Cellular Neuroscience, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Variant of the Autophagy-Related 5 Gene Is Associated with Child Cerebral Palsy
Published in
Frontiers in Cellular Neuroscience, December 2017
DOI 10.3389/fncel.2017.00407
Pubmed ID
Authors

Jianhua Xu, Lei Xia, Qing Shang, Jing Du, Dengna Zhu, Yangong Wang, Dan Bi, Juan Song, Caiyun Ma, Chao Gao, Xiaoli Zhang, Yanyan Sun, Liping Zhu, Xiaoyang Wang, Changlian Zhu, Qinghe Xing

Abstract

Cerebral palsy (CP) is a major cause of childhood disability in developed and developing countries, but the pathogenic mechanisms of CP development remain largely unknown. Autophagy is a highly conserved cellular self-digestion of damaged organelles and dysfunctional macromolecules. Growing evidence suggests that autophagy-related gene 5 (ATG5)-dependent autophagy is involved in neural development, neuronal differentiation, and neurological degenerative diseases. The aim of this study was to analyze ATG5 protein expression and gene polymorphisms in Chinese patients with CP and to evaluate the importance of ATG5 in the development of CP. Five polymorphisms from different regions of the ATG5 gene (rs510432, rs3804338, rs573775, rs2299863, and rs6568431) were analyzed in 715 CP patients and 658 controls using MassARRAY. Of these, 58 patients and 56 controls were selected for measurement of plasma ATG5 level using ELISA. The relevance of disease-associated SNPs was evaluated using the SHEsis program. We identified a significant association between rs6568431 and CP (OR = 1.388, 95% CI = 1.173~1.643, Pallele = 0.0005, Pgenotype = 0.0015). Subgroup analysis showed a highly significant association of rs6568431 with spastic CP (n = 468, OR = 1.511, 95% CI = 1.251~1.824, Pallele = 8.50e-005, Pgenotype = 1.57e-004) and spastic quadriplegia (OR = 1.927, 95% CI = 1.533~2.421, Pallele = 7.35e-008, Pgenotype = 3.24e-009). Furthermore, mean plasma ATG5 levels were lower in CP patients than in controls, and individuals carrying the AA genotype of rs6568431 that was positively associated with CP had lower plasma ATG5 levels (P < 0.05). This study demonstrated an association of an ATG5 gene variant and low level of ATG5 protein with CP, and stronger associations with severe clinical manifestations were identified. Our results provide novel evidence for a role of ATG5 in CP and shed light on the molecular mechanisms underlying this neurodevelopmental disorder.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 16%
Researcher 3 12%
Student > Ph. D. Student 3 12%
Librarian 2 8%
Professor 2 8%
Other 5 20%
Unknown 6 24%
Readers by discipline Count As %
Neuroscience 4 16%
Biochemistry, Genetics and Molecular Biology 3 12%
Nursing and Health Professions 2 8%
Medicine and Dentistry 2 8%
Agricultural and Biological Sciences 1 4%
Other 5 20%
Unknown 8 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2018.
All research outputs
#14,088,972
of 23,015,156 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,041
of 4,263 outputs
Outputs of similar age
#230,795
of 439,952 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#43
of 105 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,263 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,952 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 105 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.