↓ Skip to main content

Loss of Axon Bifurcation in Mesencephalic Trigeminal Neurons Impairs the Maximal Biting Force in Npr2-Deficient Mice

Overview of attention for article published in Frontiers in Cellular Neuroscience, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
2 X users
f1000
1 research highlight platform

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Loss of Axon Bifurcation in Mesencephalic Trigeminal Neurons Impairs the Maximal Biting Force in Npr2-Deficient Mice
Published in
Frontiers in Cellular Neuroscience, June 2018
DOI 10.3389/fncel.2018.00153
Pubmed ID
Authors

Gohar Ter-Avetisyan, Alexandre Dumoulin, Anthony Herrel, Hannes Schmidt, Johanna Strump, Shoaib Afzal, Fritz G. Rathjen

Abstract

Bifurcation of axons from dorsal root ganglion (DRG) and cranial sensory ganglion (CSG) neurons is mediated by a cGMP-dependent signaling pathway composed of the ligand C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2 and the cGMP-dependent protein kinase I (cGKI). Here, we demonstrate that mesencephalic trigeminal neurons (MTN) which are the only somatosensory neurons whose cell bodies are located within the CNS co-express Npr2 and cGKI. Afferents of MTNs form Y-shaped branches in rhombomere 2 where the ligand CNP is expressed. Analyzing mouse mutants deficient for CNP or Npr2 we found that in the absence of CNP-induced cGMP signaling MTN afferents no longer bifurcate and instead extend either into the trigeminal root or caudally in the hindbrain. Since MTNs provide sensory information from jaw closing muscles and periodontal ligaments we measured the bite force of conditional mouse mutants of Npr2 (Npr2flox/flox;Engr1 Cre ) that lack bifurcation of MTN whereas the bifurcation of trigeminal afferents is normal. Our study revealed that the maximal biting force of both sexes is reduced in Npr2flox/flox;Engr1 Cre mice as compared to their Npr2flox/flox littermate controls. In conclusion sensory feedback mechanisms from jaw closing muscles or periodontal ligaments might be impaired in the absence of MTN axon bifurcation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 39%
Professor 3 17%
Student > Bachelor 1 6%
Student > Ph. D. Student 1 6%
Unknown 6 33%
Readers by discipline Count As %
Neuroscience 5 28%
Biochemistry, Genetics and Molecular Biology 3 17%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Medicine and Dentistry 1 6%
Unknown 8 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 August 2021.
All research outputs
#13,383,945
of 23,094,276 outputs
Outputs from Frontiers in Cellular Neuroscience
#1,766
of 4,279 outputs
Outputs of similar age
#164,249
of 328,720 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#42
of 103 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,279 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,720 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 103 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.