↓ Skip to main content

Deactivation of ATP-Binding Cassette Transporters ABCB1 and ABCC1 Does Not Influence Post-ischemic Neurological Deficits, Secondary Neurodegeneration and Neurogenesis, but Induces Subtle Microglial…

Overview of attention for article published in Frontiers in Cellular Neuroscience, September 2019
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deactivation of ATP-Binding Cassette Transporters ABCB1 and ABCC1 Does Not Influence Post-ischemic Neurological Deficits, Secondary Neurodegeneration and Neurogenesis, but Induces Subtle Microglial Morphological Changes
Published in
Frontiers in Cellular Neuroscience, September 2019
DOI 10.3389/fncel.2019.00412
Pubmed ID
Authors

Daniel Manrique-Castano, Maryam Sardari, Tayana Silva de Carvalho, Thorsten R. Doeppner, Aurel Popa-Wagner, Christoph Kleinschnitz, Andrew Chan, Dirk M. Hermann

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 31%
Student > Ph. D. Student 3 19%
Student > Bachelor 2 13%
Other 1 6%
Researcher 1 6%
Other 1 6%
Unknown 3 19%
Readers by discipline Count As %
Neuroscience 4 25%
Agricultural and Biological Sciences 2 13%
Medicine and Dentistry 2 13%
Computer Science 1 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Other 2 13%
Unknown 4 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2019.
All research outputs
#16,215,484
of 25,622,179 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,510
of 4,739 outputs
Outputs of similar age
#201,240
of 352,142 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#85
of 136 outputs
Altmetric has tracked 25,622,179 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,739 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,142 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 136 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.