↓ Skip to main content

Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus

Overview of attention for article published in Frontiers in Neural Circuits, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus
Published in
Frontiers in Neural Circuits, January 2012
DOI 10.3389/fncir.2012.00075
Pubmed ID
Authors

Jeffrey James Wenstrup, Kiran Nataraj, Jason Tait Sanchez

Abstract

This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 7%
Germany 2 5%
Unknown 36 88%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 24%
Student > Ph. D. Student 10 24%
Professor > Associate Professor 4 10%
Student > Doctoral Student 3 7%
Student > Bachelor 3 7%
Other 5 12%
Unknown 6 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 39%
Neuroscience 10 24%
Biochemistry, Genetics and Molecular Biology 1 2%
Unspecified 1 2%
Arts and Humanities 1 2%
Other 4 10%
Unknown 8 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2012.
All research outputs
#20,171,868
of 22,684,168 outputs
Outputs from Frontiers in Neural Circuits
#1,024
of 1,207 outputs
Outputs of similar age
#221,189
of 244,115 outputs
Outputs of similar age from Frontiers in Neural Circuits
#44
of 73 outputs
Altmetric has tracked 22,684,168 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,207 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,115 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.