↓ Skip to main content

Decreased Hering–Breuer Input-Output Entrainment in a Mouse Model of Rett Syndrome

Overview of attention for article published in Frontiers in Neural Circuits, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Decreased Hering–Breuer Input-Output Entrainment in a Mouse Model of Rett Syndrome
Published in
Frontiers in Neural Circuits, January 2013
DOI 10.3389/fncir.2013.00042
Pubmed ID
Authors

Rishi R. Dhingra, Yenan Zhu, Frank J. Jacono, David M. Katz, Roberto F. Galán, Thomas E. Dick

Abstract

Rett syndrome, a severe X-linked neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG-binding protein 2 (Mecp2), is associated with a highly irregular respiratory pattern including severe upper-airway dysfunction. Recent work suggests that hyperexcitability of the Hering-Breuer reflex (HBR) pathway contributes to respiratory dysrhythmia in Mecp2 mutant mice. To assess how enhanced HBR input impacts respiratory entrainment by sensory afferents in closed-loop in vivo-like conditions, we investigated the input (vagal stimulus trains) - output (phrenic bursting) entrainment via the HBR in wild-type and MeCP2-deficient mice. Using the in situ perfused brainstem preparation, which maintains an intact pontomedullary axis capable of generating an in vivo-like respiratory rhythm in the absence of the HBR, we mimicked the HBR feedback input by stimulating the vagus nerve (at threshold current, 0.5 ms pulse duration, 75 Hz pulse frequency, 100 ms train duration) at an inter-burst frequency matching that of the intrinsic oscillation of the inspiratory motor output of each preparation. Using this approach, we observed significant input-output entrainment in wild-type mice as measured by the maximum of the cross-correlation function, the peak of the instantaneous relative phase distribution, and the mutual information of the instantaneous phases. This entrainment was associated with a reduction in inspiratory duration during feedback stimulation. In contrast, the strength of input-output entrainment was significantly weaker in Mecp2 (-/+) mice. However, Mecp2 (-/+) mice also had a reduced inspiratory duration during stimulation, indicating that reflex behavior in the HBR pathway was intact. Together, these observations suggest that the respiratory network compensates for enhanced sensitivity of HBR inputs by reducing HBR input-output entrainment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Finland 1 3%
Mexico 1 3%
China 1 3%
Unknown 30 88%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Student > Ph. D. Student 5 15%
Other 3 9%
Student > Master 3 9%
Professor 2 6%
Other 5 15%
Unknown 9 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 24%
Neuroscience 8 24%
Nursing and Health Professions 2 6%
Engineering 2 6%
Medicine and Dentistry 2 6%
Other 4 12%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 April 2013.
All research outputs
#20,187,333
of 22,703,044 outputs
Outputs from Frontiers in Neural Circuits
#1,026
of 1,209 outputs
Outputs of similar age
#248,729
of 280,707 outputs
Outputs of similar age from Frontiers in Neural Circuits
#137
of 173 outputs
Altmetric has tracked 22,703,044 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,209 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,707 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.