↓ Skip to main content

Changes in the expression of GABAA receptor subunit mRNAs in parahippocampal areas after kainic acid induced seizures

Overview of attention for article published in Frontiers in Neural Circuits, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Changes in the expression of GABAA receptor subunit mRNAs in parahippocampal areas after kainic acid induced seizures
Published in
Frontiers in Neural Circuits, January 2013
DOI 10.3389/fncir.2013.00142
Pubmed ID
Authors

Meinrad Drexel, Elke Kirchmair, Günther Sperk

Abstract

The parahippocampal areas including the subiculum, pre- and parasubiculum, and notably the entorhinal cortex (EC) are intimately involved in the generation of limbic seizures in temporal lobe epilepsy. We investigated changes in the expression of 10 major GABAA receptor subunit mRNAs in subfields of the ventral hippocampus, ventral subiculum, EC, and perirhinal cortex (PRC) at different intervals (1, 8, 30, and 90 days) after kainic acid (KA)-induced status epilepticus priming epileptogenesis in the rat. The most pronounced and ubiquitous changes were a transient (24 h after KA only) down-regulation of γ2 mRNA and lasting decreases in subunit α5, β3, and δ mRNAs that were prominent in all hippocampal and parahippocampal areas. In the subiculum similarly as in sectors CA1 and CA3, levels of subunit α1, α2, α4, and γ2 mRNAs decreased transiently (1 day after KA-induced status epilepticus). They were followed by increased expression of subunit α1 and α3 mRNAs in the dentate gyrus (DG) and sectors CA1 and CA3, and subunit α1 also in the EC layer II (30 and 90 days after KA). We also observed sustained overexpression of subunits α4 and γ2 in the subiculum and in the Ammon's horn. Subunit γ2 mRNA was also increased in sector CA1 at the late intervals after KA. Taken together, our results suggest distinct regulation of mRNA expression for individual GABAA receptor subunits. Especially striking was the wide-spread down-regulation of the often peri- or extrasynaptically located subunits α5 and δ. These subunits are often associated with tonic inhibition. Their decrease could be related to decreased tonic inhibition or may merely reflect compensatory changes. In contrast, expression of subunit α4 that may also mediate tonic inhibition when associated with the δ-subunit was significantly upregulated in the DG and in the proximal subiculum at late intervals. Thus, concomitant up-regulation of subunit γ2, α1 and α4 mRNAs (and loss in δ-subunits) ultimately indicates significant rearrangement of GABAA receptor composition after KA-induced seizures.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Austria 1 2%
Unknown 48 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 18%
Researcher 9 18%
Student > Doctoral Student 7 14%
Student > Bachelor 4 8%
Student > Master 4 8%
Other 11 22%
Unknown 5 10%
Readers by discipline Count As %
Neuroscience 15 31%
Agricultural and Biological Sciences 12 24%
Medicine and Dentistry 6 12%
Psychology 3 6%
Biochemistry, Genetics and Molecular Biology 3 6%
Other 2 4%
Unknown 8 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2013.
All research outputs
#20,202,510
of 22,721,584 outputs
Outputs from Frontiers in Neural Circuits
#1,025
of 1,209 outputs
Outputs of similar age
#248,784
of 280,761 outputs
Outputs of similar age from Frontiers in Neural Circuits
#137
of 173 outputs
Altmetric has tracked 22,721,584 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,209 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,761 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.