↓ Skip to main content

An investigation of Hebbian phase sequences as assembly graphs

Overview of attention for article published in Frontiers in Neural Circuits, April 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An investigation of Hebbian phase sequences as assembly graphs
Published in
Frontiers in Neural Circuits, April 2014
DOI 10.3389/fncir.2014.00034
Pubmed ID
Authors

Daniel G. Almeida-Filho, Vitor Lopes-dos-Santos, Nivaldo A. P. Vasconcelos, José G. V. Miranda, Adriano B. L. Tort, Sidarta Ribeiro

Abstract

Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 3 4%
Brazil 2 3%
France 1 1%
Unknown 61 91%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 24%
Researcher 14 21%
Student > Master 9 13%
Student > Bachelor 9 13%
Student > Postgraduate 4 6%
Other 12 18%
Unknown 3 4%
Readers by discipline Count As %
Neuroscience 23 34%
Agricultural and Biological Sciences 15 22%
Psychology 5 7%
Computer Science 5 7%
Physics and Astronomy 4 6%
Other 12 18%
Unknown 3 4%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 April 2014.
All research outputs
#15,299,491
of 22,753,345 outputs
Outputs from Frontiers in Neural Circuits
#777
of 1,213 outputs
Outputs of similar age
#134,727
of 228,038 outputs
Outputs of similar age from Frontiers in Neural Circuits
#13
of 20 outputs
Altmetric has tracked 22,753,345 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,213 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 228,038 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.