↓ Skip to main content

Activity-dependent serotonergic excitation of callosal projection neurons in the mouse prefrontal cortex

Overview of attention for article published in Frontiers in Neural Circuits, August 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Activity-dependent serotonergic excitation of callosal projection neurons in the mouse prefrontal cortex
Published in
Frontiers in Neural Circuits, August 2014
DOI 10.3389/fncir.2014.00097
Pubmed ID
Authors

Emily K. Stephens, Daniel Avesar, Allan T. Gulledge

Abstract

Layer 5 pyramidal neurons (L5PNs) in the mouse prefrontal cortex respond to serotonin (5-HT) according to their long-distance axonal projections; 5-HT1A (1A) receptors mediate inhibitory responses in corticopontine (CPn) L5PNs, while 5-HT2A (2A) receptors can enhance action potential (AP) output in callosal/commissural (COM) L5PNs, either directly (in "COM-excited" neurons), or following brief 1A-mediated inhibition (in "COM-biphasic" neurons). Here we compare the impact of 5-HT on the excitability of CPn and COM L5PNs experiencing variable excitatory drive produced by current injection (DC current or simulated synaptic current) or with exogenous glutamate. 5-HT delivered at resting membrane potentials, or paired with subthreshold depolarizing input, hyperpolarized CPn and COM-biphasic L5PNs and failed to promote AP generation in COM-excited L5PNs. Conversely, when paired with suprathreshold excitatory drive generating multiple APs, 5-HT suppressed AP output in CPn L5PNs, enhanced AP generation in COM-excited L5PNs, and generated variable responses in COM-biphasic L5PNs. While COM-excited neurons failed to respond to 5-HT in the presence of a 2A receptor antagonist, 32% of CPn neurons exhibited 2A-dependent excitation following blockade of 1A receptors. The presence of pharmacologically revealed 2A receptors in CPn L5PNs was correlated with the duration of 1A-mediated inhibition, yet biphasic excitatory responses to 5-HT were never observed, even when 5-HT was paired with strong excitatory drive. Our results suggest that 2A receptors selectively amplify the output of COM L5PNs experiencing suprathreshold excitatory drive, while shaping the duration of 1A-mediated inhibition in a subset of CPn L5PNs. Activity-dependent serotonergic excitation of COM L5PNs, combined with 1A-mediated inhibition of CPn and COM-biphasic L5PNs, may facilitate executive function by focusing network activity within cortical circuits subserving the most appropriate behavioral output.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 2%
Unknown 57 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 24%
Student > Ph. D. Student 13 22%
Student > Bachelor 5 9%
Student > Master 5 9%
Student > Doctoral Student 3 5%
Other 11 19%
Unknown 7 12%
Readers by discipline Count As %
Neuroscience 18 31%
Agricultural and Biological Sciences 16 28%
Psychology 7 12%
Medicine and Dentistry 4 7%
Engineering 2 3%
Other 2 3%
Unknown 9 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2014.
All research outputs
#21,011,775
of 25,806,763 outputs
Outputs from Frontiers in Neural Circuits
#1,002
of 1,303 outputs
Outputs of similar age
#182,025
of 248,080 outputs
Outputs of similar age from Frontiers in Neural Circuits
#19
of 28 outputs
Altmetric has tracked 25,806,763 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,303 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 248,080 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.