↓ Skip to main content

Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy

Overview of attention for article published in Frontiers in Neural Circuits, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy
Published in
Frontiers in Neural Circuits, September 2014
DOI 10.3389/fncir.2014.00101
Pubmed ID
Authors

Florian B. Neubauer, Audrey Sederberg, Jason N. MacLean

Abstract

During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 6%
Unknown 33 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 34%
Student > Ph. D. Student 7 20%
Student > Master 4 11%
Student > Bachelor 3 9%
Student > Postgraduate 3 9%
Other 4 11%
Unknown 2 6%
Readers by discipline Count As %
Neuroscience 16 46%
Agricultural and Biological Sciences 7 20%
Medicine and Dentistry 7 20%
Social Sciences 1 3%
Unspecified 1 3%
Other 1 3%
Unknown 2 6%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2014.
All research outputs
#15,306,466
of 22,764,165 outputs
Outputs from Frontiers in Neural Circuits
#777
of 1,213 outputs
Outputs of similar age
#137,386
of 237,867 outputs
Outputs of similar age from Frontiers in Neural Circuits
#18
of 30 outputs
Altmetric has tracked 22,764,165 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,213 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 237,867 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.