↓ Skip to main content

Basal ganglia—thalamus and the “crowning enigma”

Overview of attention for article published in Frontiers in Neural Circuits, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
117 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Basal ganglia—thalamus and the “crowning enigma”
Published in
Frontiers in Neural Circuits, November 2015
DOI 10.3389/fncir.2015.00071
Pubmed ID
Authors

Marianela Garcia-Munoz, Gordon W. Arbuthnott

Abstract

When Hubel (1982) referred to layer 1 of primary visual cortex as "… a 'crowning mystery' to keep area-17 physiologists busy for years to come …" he could have been talking about any cortical area. In the 80's and 90's there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1), the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU) input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory (S1) cortex before focusing on motor cortex.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 117 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 2 2%
United States 2 2%
France 1 <1%
Germany 1 <1%
Belgium 1 <1%
Sweden 1 <1%
Unknown 109 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 37 32%
Researcher 29 25%
Student > Master 12 10%
Student > Bachelor 8 7%
Other 5 4%
Other 11 9%
Unknown 15 13%
Readers by discipline Count As %
Neuroscience 42 36%
Agricultural and Biological Sciences 30 26%
Medicine and Dentistry 7 6%
Computer Science 4 3%
Psychology 4 3%
Other 9 8%
Unknown 21 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2015.
All research outputs
#13,449,870
of 22,832,057 outputs
Outputs from Frontiers in Neural Circuits
#584
of 1,216 outputs
Outputs of similar age
#135,227
of 285,322 outputs
Outputs of similar age from Frontiers in Neural Circuits
#18
of 31 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,216 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 285,322 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.