↓ Skip to main content

Longitudinal Changes in Depressive Circuitry in Response to Neuromodulation Therapy

Overview of attention for article published in Frontiers in Neural Circuits, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
111 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Longitudinal Changes in Depressive Circuitry in Response to Neuromodulation Therapy
Published in
Frontiers in Neural Circuits, July 2016
DOI 10.3389/fncir.2016.00050
Pubmed ID
Authors

Yagna Pathak, Oludamilola Salami, Sylvain Baillet, Zhimin Li, Christopher R. Butson

Abstract

Background: Major depressive disorder (MDD) is a public health problem worldwide. There is increasing interest in using non-invasive therapies such as repetitive transcranial magnetic stimulation (rTMS) to treat MDD. However, the changes induced by rTMS on neural circuits remain poorly characterized. The present study aims to test whether the brain regions previously targeted by deep brain stimulation (DBS) in the treatment of MDD respond to rTMS, and whether functional connectivity (FC) measures can predict clinical response. Methods: rTMS (20 sessions) was administered to five MDD patients at the left-dorsolateral prefrontal cortex (L-DLPFC) over 4 weeks. Magnetoencephalography (MEG) recordings and Montgomery-Asberg depression rating scale (MADRS) assessments were acquired before, during and after treatment. Our primary measures, obtained with MEG source imaging, were changes in power spectral density (PSD) and changes in FC as measured using coherence. Results: Of the five patients, four met the clinical response criterion (40% or greater decrease in MADRS) after 4 weeks of treatment. An increase in gamma power at the L-DLPFC was correlated with improvement in symptoms. We also found that increases in delta band connectivity between L-DLPFC/amygdala and L-DLPFC/pregenual anterior cingulate cortex (pACC), and decreases in gamma band connectivity between L-DLPFC/subgenual anterior cingulate cortex (sACC), were correlated with improvements in depressive symptoms. Conclusions: Our results suggest that non-invasive intervention techniques, such as rTMS, modulate the ongoing activity of depressive circuits targeted for DBS, and that MEG can capture these changes. Gamma oscillations may originate from GABA-mediated inhibition, which increases synchronization of large neuronal populations, possibly leading to increased long-range FC. We postulate that responses to rTMS could provide valuable insights into early evaluation of patient candidates for DBS surgery.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 111 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
France 1 <1%
Canada 1 <1%
Unknown 107 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 22 20%
Student > Ph. D. Student 20 18%
Student > Master 14 13%
Student > Bachelor 6 5%
Student > Doctoral Student 5 5%
Other 16 14%
Unknown 28 25%
Readers by discipline Count As %
Neuroscience 32 29%
Medicine and Dentistry 18 16%
Psychology 11 10%
Engineering 8 7%
Agricultural and Biological Sciences 4 4%
Other 4 4%
Unknown 34 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2016.
All research outputs
#15,585,033
of 24,698,221 outputs
Outputs from Frontiers in Neural Circuits
#693
of 1,283 outputs
Outputs of similar age
#223,869
of 373,612 outputs
Outputs of similar age from Frontiers in Neural Circuits
#20
of 30 outputs
Altmetric has tracked 24,698,221 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,283 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 373,612 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.