↓ Skip to main content

Estimating Fast Neural Input Using Anatomical and Functional Connectivity

Overview of attention for article published in Frontiers in Neural Circuits, December 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Estimating Fast Neural Input Using Anatomical and Functional Connectivity
Published in
Frontiers in Neural Circuits, December 2016
DOI 10.3389/fncir.2016.00099
Pubmed ID
Authors

David Eriksson

Abstract

In the last 20 years there has been an increased interest in estimating signals that are sent between neurons and brain areas. During this time many new methods have appeared for measuring those signals. Here we review a wide range of methods for which connected neurons can be identified anatomically, by tracing axons that run between the cells, or functionally, by detecting if the activity of two neurons are correlated with a short lag. The signals that are sent between the neurons are represented by the activity in the neurons that are connected to the target population or by the activity at the corresponding synapses. The different methods not only differ in the accuracy of the signal measurement but they also differ in the type of signal being measured. For example, unselective recording of all neurons in the source population encompasses more indirect pathways to the target population than if one selectively record from the neurons that project to the target population. Infact, this degree of selectivity is similar to that of optogenetic perturbations; one can perturb selectively or unselectively. Thus it becomes possible to match a given signal measurement method with a signal perturbation method, something that allows for an exact input control to any neuronal population.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 5%
Unknown 18 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 32%
Student > Ph. D. Student 4 21%
Student > Master 3 16%
Professor 2 11%
Professor > Associate Professor 2 11%
Other 1 5%
Unknown 1 5%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 32%
Neuroscience 5 26%
Medicine and Dentistry 2 11%
Environmental Science 1 5%
Social Sciences 1 5%
Other 3 16%
Unknown 1 5%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 December 2016.
All research outputs
#17,842,847
of 22,919,505 outputs
Outputs from Frontiers in Neural Circuits
#854
of 1,220 outputs
Outputs of similar age
#293,480
of 420,829 outputs
Outputs of similar age from Frontiers in Neural Circuits
#24
of 37 outputs
Altmetric has tracked 22,919,505 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,220 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,829 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.