↓ Skip to main content

Acetylcholine Neuromodulation in Normal and Abnormal Learning and Memory: Vigilance Control in Waking, Sleep, Autism, Amnesia and Alzheimer’s Disease

Overview of attention for article published in Frontiers in Neural Circuits, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
13 X users
facebook
1 Facebook page
video
3 YouTube creators

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
107 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acetylcholine Neuromodulation in Normal and Abnormal Learning and Memory: Vigilance Control in Waking, Sleep, Autism, Amnesia and Alzheimer’s Disease
Published in
Frontiers in Neural Circuits, November 2017
DOI 10.3389/fncir.2017.00082
Pubmed ID
Authors

Stephen Grossberg

Abstract

Adaptive Resonance Theory, or ART, is a neural model that explains how normal and abnormal brains may learn to categorize and recognize objects and events in a changing world, and how these learned categories may be remembered for a long time. This article uses ART to propose and unify the explanation of diverse data about normal and abnormal modulation of learning and memory by acetylcholine (ACh). In ART, vigilance control determines whether learned categories will be general and abstract, or specific and concrete. ART models how vigilance may be regulated by ACh release in layer 5 neocortical cells by influencing after-hyperpolarization (AHP) currents. This phasic ACh release is mediated by cells in the nucleus basalis (NB) of Meynert that are activated by unexpected events. The article additionally discusses data about ACh-mediated tonic control of vigilance. ART proposes that there are often dynamic breakdowns of tonic control in mental disorders such as autism, where vigilance remains high, and medial temporal amnesia, where vigilance remains low. Tonic control also occurs during sleep-wake cycles. Properties of Up and Down states during slow wave sleep arise in ACh-modulated laminar cortical ART circuits that carry out processes in awake individuals of contrast normalization, attentional modulation, decision-making, activity-dependent habituation, and mismatch-mediated reset. These slow wave sleep circuits interact with circuits that control circadian rhythms and memory consolidation. Tonic control properties also clarify how Alzheimer's disease symptoms follow from a massive structural degeneration that includes undermining vigilance control by ACh in cortical layers 3 and 5. Sleep disruptions before and during Alzheimer's disease, and how they contribute to a vicious cycle of plaque formation in layers 3 and 5, are also clarified from this perspective.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 107 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 107 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 14%
Student > Bachelor 15 14%
Student > Master 13 12%
Student > Ph. D. Student 9 8%
Student > Doctoral Student 7 7%
Other 17 16%
Unknown 31 29%
Readers by discipline Count As %
Neuroscience 20 19%
Psychology 13 12%
Biochemistry, Genetics and Molecular Biology 8 7%
Pharmacology, Toxicology and Pharmaceutical Science 6 6%
Medicine and Dentistry 6 6%
Other 17 16%
Unknown 37 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2022.
All research outputs
#5,220,200
of 25,375,376 outputs
Outputs from Frontiers in Neural Circuits
#305
of 1,299 outputs
Outputs of similar age
#85,513
of 336,813 outputs
Outputs of similar age from Frontiers in Neural Circuits
#12
of 37 outputs
Altmetric has tracked 25,375,376 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,299 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,813 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.