↓ Skip to main content

Top-Down Influences on Local Networks: Basic Theory with Experimental Implications

Overview of attention for article published in Frontiers in Computational Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
94 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Top-Down Influences on Local Networks: Basic Theory with Experimental Implications
Published in
Frontiers in Computational Neuroscience, January 2013
DOI 10.3389/fncom.2013.00029
Pubmed ID
Authors

Ramesh Srinivasan, Samuel Thorpe, Paul L. Nunez

Abstract

The response of a population of cortical neurons to an external stimulus depends not only on the receptive field properties of the neurons, but also the level of arousal and attention or goal-oriented cognitive biases that guide information processing. These top-down effects on cortical neurons bias the output of the neurons and affect behavioral outcomes such as stimulus detection, discrimination, and response time. In any physiological study, neural dynamics are observed in a specific brain state; the background state partly determines neuronal excitability. Experimental studies in humans and animal models have also demonstrated that slow oscillations (typically in the alpha or theta bands) modulate the fast oscillations (gamma band) associated with local networks of neurons. Cross-frequency interaction is of interest as a mechanism for top-down or bottom up interactions between systems at different spatial scales. We develop a generic model of top-down influences on local networks appropriate for comparison with EEG. EEG provides excellent temporal resolution to investigate neuronal oscillations but is space-averaged on the cm scale. Thus, appropriate EEG models are developed in terms of population synaptic activity. We used the Wilson-Cowan population model to investigate fast (gamma band) oscillations generated by a local network of excitatory and inhibitory neurons. We modified the Wilson-Cowan equations to make them more physiologically realistic by explicitly incorporating background state variables into the model. We found that the population response is strongly influenced by the background state. We apply the model to reproduce the modulation of gamma rhythms by theta rhythms as has been observed in animal models and human ECoG and EEG studies. The concept of a dynamic background state presented here using the Wilson-Cowan model can be readily applied to incorporate top-down modulation in more detailed models of specific cortical systems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 94 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 4 4%
Germany 3 3%
Canada 1 1%
Colombia 1 1%
Japan 1 1%
Russia 1 1%
Unknown 83 88%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 29%
Researcher 27 29%
Professor 6 6%
Professor > Associate Professor 6 6%
Student > Master 6 6%
Other 16 17%
Unknown 6 6%
Readers by discipline Count As %
Neuroscience 19 20%
Psychology 18 19%
Agricultural and Biological Sciences 16 17%
Medicine and Dentistry 8 9%
Engineering 7 7%
Other 18 19%
Unknown 8 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2013.
All research outputs
#13,309,286
of 22,708,120 outputs
Outputs from Frontiers in Computational Neuroscience
#550
of 1,336 outputs
Outputs of similar age
#157,510
of 280,717 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#49
of 131 outputs
Altmetric has tracked 22,708,120 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,336 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,717 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.