↓ Skip to main content

Cerebral lactate dynamics across sleep/wake cycles

Overview of attention for article published in Frontiers in Computational Neuroscience, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cerebral lactate dynamics across sleep/wake cycles
Published in
Frontiers in Computational Neuroscience, January 2015
DOI 10.3389/fncom.2014.00174
Pubmed ID
Authors

Michael J. Rempe, Jonathan P. Wisor

Abstract

Cerebral metabolism varies dramatically as a function of sleep state. Brain concentration of lactate, the end product of glucose utilization via glycolysis, varies as a function of sleep state, and like slow wave activity (SWA) in the electroencephalogram (EEG), increases as a function of time spent awake or in rapid eye movement sleep and declines as a function of time spent in slow wave sleep (SWS). We sought to determine whether lactate concentration exhibits homeostatic dynamics akin to those of SWA in SWS. Lactate concentration in the cerebral cortex was measured by indwelling enzymatic biosensors. A set of equations based conceptually on Process S (previously used to quantify the homeostatic dynamics of SWA) was used to predict the sleep/wake state-dependent dynamics of lactate concentration in the cerebral cortex. Additionally, we applied an iterative parameter space-restricting algorithm (the Nelder-Mead method) to reduce computational time to find the optimal values of the free parameters. Compared to an exhaustive search, this algorithm reduced the computation time required by orders of magnitude. We show that state-dependent lactate concentration dynamics can be described by a homeostatic model, but that the optimal time constants for describing lactate dynamics are much smaller than those of SWA. This disconnect between lactate dynamics and SWA dynamics does not support the concept that lactate concentration is a biochemical mediator of sleep homeostasis. However, lactate synthesis in the cerebral cortex may nonetheless be informative with regard to sleep function, since the impact of glycolysis on sleep slow wave regulation is only just now being investigated.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Unknown 34 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 20%
Student > Bachelor 6 17%
Student > Ph. D. Student 6 17%
Student > Doctoral Student 3 9%
Professor > Associate Professor 3 9%
Other 6 17%
Unknown 4 11%
Readers by discipline Count As %
Neuroscience 10 29%
Agricultural and Biological Sciences 5 14%
Social Sciences 3 9%
Biochemistry, Genetics and Molecular Biology 2 6%
Psychology 2 6%
Other 7 20%
Unknown 6 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 May 2023.
All research outputs
#16,799,269
of 25,483,400 outputs
Outputs from Frontiers in Computational Neuroscience
#806
of 1,466 outputs
Outputs of similar age
#211,676
of 361,565 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#20
of 33 outputs
Altmetric has tracked 25,483,400 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,466 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,565 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.