↓ Skip to main content

Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

Overview of attention for article published in Frontiers in Computational Neuroscience, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain
Published in
Frontiers in Computational Neuroscience, May 2015
DOI 10.3389/fncom.2015.00055
Pubmed ID
Authors

Pascal Grange, Idan Menashe, Michael Hawrylycz

Abstract

Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder (ASD), have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles) according to the similarity between their spatial density profiles and the spatial expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques). Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliques than any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (which can be either a granule cell or a Purkinje cell).

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
United States 1 3%
Unknown 31 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 18%
Student > Master 4 12%
Student > Ph. D. Student 4 12%
Student > Bachelor 3 9%
Unspecified 2 6%
Other 5 15%
Unknown 9 27%
Readers by discipline Count As %
Neuroscience 6 18%
Biochemistry, Genetics and Molecular Biology 5 15%
Agricultural and Biological Sciences 4 12%
Unspecified 2 6%
Computer Science 2 6%
Other 3 9%
Unknown 11 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2015.
All research outputs
#13,742,483
of 22,807,037 outputs
Outputs from Frontiers in Computational Neuroscience
#611
of 1,342 outputs
Outputs of similar age
#130,694
of 265,918 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#20
of 43 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,342 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,918 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.