↓ Skip to main content

Linear summation of outputs in a balanced network model of motor cortex

Overview of attention for article published in Frontiers in Computational Neuroscience, June 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Linear summation of outputs in a balanced network model of motor cortex
Published in
Frontiers in Computational Neuroscience, June 2015
DOI 10.3389/fncom.2015.00063
Pubmed ID
Authors

Charles Capaday, Carl van Vreeswijk

Abstract

Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Student > Ph. D. Student 6 18%
Student > Master 4 12%
Student > Bachelor 3 9%
Professor 3 9%
Other 4 12%
Unknown 6 18%
Readers by discipline Count As %
Neuroscience 9 27%
Agricultural and Biological Sciences 3 9%
Engineering 3 9%
Physics and Astronomy 2 6%
Computer Science 2 6%
Other 6 18%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 June 2015.
All research outputs
#18,411,569
of 22,807,037 outputs
Outputs from Frontiers in Computational Neuroscience
#1,053
of 1,342 outputs
Outputs of similar age
#192,645
of 266,908 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#34
of 47 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,342 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,908 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.