↓ Skip to main content

Effects of homeostatic constraints on associative memory storage and synaptic connectivity of cortical circuits

Overview of attention for article published in Frontiers in Computational Neuroscience, June 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (57th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of homeostatic constraints on associative memory storage and synaptic connectivity of cortical circuits
Published in
Frontiers in Computational Neuroscience, June 2015
DOI 10.3389/fncom.2015.00074
Pubmed ID
Authors

Julio Chapeton, Rohan Gala, Armen Stepanyants

Abstract

The impact of learning and long-term memory storage on synaptic connectivity is not completely understood. In this study, we examine the effects of associative learning on synaptic connectivity in adult cortical circuits by hypothesizing that these circuits function in a steady-state, in which the memory capacity of a circuit is maximal and learning must be accompanied by forgetting. Steady-state circuits should be characterized by unique connectivity features. To uncover such features we developed a biologically constrained, exactly solvable model of associative memory storage. The model is applicable to networks of multiple excitatory and inhibitory neuron classes and can account for homeostatic constraints on the number and the overall weight of functional connections received by each neuron. The results show that in spite of a large number of neuron classes, functional connections between potentially connected cells are realized with less than 50% probability if the presynaptic cell is excitatory and generally a much greater probability if it is inhibitory. We also find that constraining the overall weight of presynaptic connections leads to Gaussian connection weight distributions that are truncated at zero. In contrast, constraining the total number of functional presynaptic connections leads to non-Gaussian distributions, in which weak connections are absent. These theoretical predictions are compared with a large dataset of published experimental studies reporting amplitudes of unitary postsynaptic potentials and probabilities of connections between various classes of excitatory and inhibitory neurons in the cerebellum, neocortex, and hippocampus.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 4%
Unknown 22 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 30%
Researcher 6 26%
Student > Bachelor 4 17%
Student > Master 2 9%
Professor 1 4%
Other 1 4%
Unknown 2 9%
Readers by discipline Count As %
Neuroscience 9 39%
Agricultural and Biological Sciences 4 17%
Physics and Astronomy 3 13%
Engineering 2 9%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 2 9%
Unknown 2 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2015.
All research outputs
#12,611,160
of 22,807,037 outputs
Outputs from Frontiers in Computational Neuroscience
#433
of 1,342 outputs
Outputs of similar age
#112,401
of 264,504 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#13
of 49 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,342 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,504 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.