↓ Skip to main content

Velocity neurons improve performance more than goal or position neurons do in a simulated closed-loop BCI arm-reaching task

Overview of attention for article published in Frontiers in Computational Neuroscience, July 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Velocity neurons improve performance more than goal or position neurons do in a simulated closed-loop BCI arm-reaching task
Published in
Frontiers in Computational Neuroscience, July 2015
DOI 10.3389/fncom.2015.00084
Pubmed ID
Authors

James Y. Liao, Robert F. Kirsch

Abstract

Brain-Computer Interfaces (BCIs) that convert brain-recorded neural signals into intended movement commands could eventually be combined with Functional Electrical Stimulation to allow individuals with Spinal Cord Injury to regain effective and intuitive control of their paralyzed limbs. To accelerate the development of such an approach, we developed a model of closed-loop BCI control of arm movements that (1) generates realistic arm movements (based on experimentally measured, visually-guided movements with real-time error correction), (2) simulates cortical neurons with firing properties consistent with literature reports, and (3) decodes intended movements from the noisy neural ensemble. With this model we explored (1) the relative utility of neurons tuned for different movement parameters (position, velocity, and goal) and (2) the utility of recording from larger numbers of neurons-critical issues for technology development and for determining appropriate brain areas for recording. We simulated arm movements that could be practically restored to individuals with severe paralysis, i.e., movements from an armrest to a volume in front of the person. Performance was evaluated by calculating the smallest movement endpoint target radius within which the decoded cursor position could dwell for 1 s. Our results show that goal, position, and velocity neurons all contribute to improve performance. However, velocity neurons enabled smaller targets to be reached in shorter amounts of time than goal or position neurons. Increasing the number of neurons also improved performance, although performance saturated at 30-50 neurons for most neuron types. Overall, our work presents a closed-loop BCI simulator that models error corrections and the firing properties of various movement-related neurons that can be easily modified to incorporate different neural properties. We anticipate that this kind of tool will be important for development of future BCIs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 5%
Brazil 1 5%
Unknown 18 90%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 45%
Researcher 3 15%
Student > Master 3 15%
Student > Bachelor 2 10%
Other 1 5%
Other 1 5%
Unknown 1 5%
Readers by discipline Count As %
Engineering 8 40%
Computer Science 3 15%
Agricultural and Biological Sciences 2 10%
Medicine and Dentistry 2 10%
Neuroscience 2 10%
Other 2 10%
Unknown 1 5%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 July 2015.
All research outputs
#20,656,161
of 25,373,627 outputs
Outputs from Frontiers in Computational Neuroscience
#1,116
of 1,463 outputs
Outputs of similar age
#202,231
of 276,415 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#39
of 47 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,463 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,415 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.