↓ Skip to main content

A new paradigm and computational framework to estimate stop-signal reaction time distributions from the inhibition of complex motor sequences

Overview of attention for article published in Frontiers in Computational Neuroscience, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A new paradigm and computational framework to estimate stop-signal reaction time distributions from the inhibition of complex motor sequences
Published in
Frontiers in Computational Neuroscience, July 2015
DOI 10.3389/fncom.2015.00087
Pubmed ID
Authors

Tobias Teichert, Vincent P. Ferrera

Abstract

Inhibitory control is an important component of executive function that allows organisms to abort emerging behavioral plans or ongoing actions on the fly as new sensory information becomes available. Current models treat inhibitory control as a race between a Go- and a Stop process that may be mediated by partially distinct neural substrates, i.e., the direct and the hyper-direct pathway of the basal ganglia. The fact that finishing times of the Stop process (Stop-Signal Reaction Time, SSRT) cannot be observed directly has precluded a precise comparison of the functional properties that govern the initiation (GoRT) and inhibition (SSRT) of a motor response. To solve this problem, we modified an existing inhibitory paradigm and developed a non-parametric framework to measure the trial-by-trial variability of SSRT. A series of simulations verified that the non-parametric approach is on par with a parametric approach and yields accurate estimates of the entire SSRT distribution from as few as ~750 trials. Our results show that in identical settings, the distribution of SSRT is very similar to the distribution of GoRT albeit somewhat shorter, wider and significantly less right-skewed. The ability to measure the precise shapes of SSRT distributions opens new avenues for research into the functional properties of the hyper-direct pathway that is believed to mediate inhibitory control.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 28%
Researcher 5 13%
Student > Master 4 10%
Professor 4 10%
Student > Doctoral Student 2 5%
Other 3 8%
Unknown 10 26%
Readers by discipline Count As %
Psychology 12 31%
Neuroscience 10 26%
Medicine and Dentistry 3 8%
Social Sciences 2 5%
Engineering 1 3%
Other 0 0%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2016.
All research outputs
#13,949,913
of 22,816,807 outputs
Outputs from Frontiers in Computational Neuroscience
#628
of 1,343 outputs
Outputs of similar age
#130,571
of 262,658 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#18
of 44 outputs
Altmetric has tracked 22,816,807 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,343 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,658 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.