↓ Skip to main content

A three-dimensional mathematical model for the signal propagation on a neuron's membrane

Overview of attention for article published in Frontiers in Computational Neuroscience, July 2015
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A three-dimensional mathematical model for the signal propagation on a neuron's membrane
Published in
Frontiers in Computational Neuroscience, July 2015
DOI 10.3389/fncom.2015.00094
Pubmed ID
Authors

Konstantinos Xylouris, Gabriel Wittum

Abstract

In order to be able to examine the extracellular potential's influence on network activity and to better understand dipole properties of the extracellular potential, we present and analyze a three-dimensional formulation of the cable equation which facilitates numeric simulations. When the neuron's intra- and extracellular space is assumed to be purely resistive (i.e., no free charges), the balance law of electric fluxes leads to the Laplace equation for the distribution of the intra- and extracellular potential. Moreover, the flux across the neuron's membrane is continuous. This observation already delivers the three dimensional cable equation. The coupling of the intra- and extracellular potential over the membrane is not trivial. Here, we present a continuous extension of the extracellular potential to the intracellular space and combine the resulting equation with the intracellular problem. This approach makes the system numerically accessible. On the basis of the assumed pure resistive intra- and extracellular spaces, we conclude that a cell's out-flux balances out completely. As a consequence neurons do not own any current monopoles. We present a rigorous analysis with spherical harmonics for the extracellular potential by approximating the neuron's geometry to a sphere. Furthermore, we show with first numeric simulations on idealized circumstances that the extracellular potential can have a decisive effect on network activity through ephaptic interactions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 5%
Unknown 21 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Researcher 4 18%
Student > Bachelor 3 14%
Student > Master 3 14%
Student > Doctoral Student 2 9%
Other 3 14%
Unknown 2 9%
Readers by discipline Count As %
Engineering 7 32%
Neuroscience 4 18%
Biochemistry, Genetics and Molecular Biology 1 5%
Mathematics 1 5%
Agricultural and Biological Sciences 1 5%
Other 5 23%
Unknown 3 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2015.
All research outputs
#17,765,819
of 22,817,213 outputs
Outputs from Frontiers in Computational Neuroscience
#960
of 1,343 outputs
Outputs of similar age
#157,834
of 234,778 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#34
of 43 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,343 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 234,778 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.