↓ Skip to main content

Phase Difference between Model Cortical Areas Determines Level of Information Transfer

Overview of attention for article published in Frontiers in Computational Neuroscience, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phase Difference between Model Cortical Areas Determines Level of Information Transfer
Published in
Frontiers in Computational Neuroscience, February 2017
DOI 10.3389/fncom.2017.00006
Pubmed ID
Authors

Marije ter Wal, Paul H. Tiesinga

Abstract

Communication between cortical sites is mediated by long-range synaptic connections. However, these connections are relatively static, while everyday cognitive tasks demand a fast and flexible routing of information in the brain. Synchronization of activity between distant cortical sites has been proposed as the mechanism underlying such a dynamic communication structure. Here, we study how oscillatory activity affects the excitability and input-output relation of local cortical circuits and how it alters the transmission of information between cortical circuits. To this end, we develop model circuits showing fast oscillations by the PING mechanism, of which the oscillatory characteristics can be altered. We identify conditions for synchronization between two brain circuits and show that the level of intercircuit coherence and the phase difference is set by the frequency difference between the intrinsic oscillations. We show that the susceptibility of the circuits to inputs, i.e., the degree of change in circuit output following input pulses, is not uniform throughout the oscillation period and that both firing rate, frequency and power are differentially modulated by inputs arriving at different phases. As a result, an appropriate phase difference between the circuits is critical for the susceptibility windows of the circuits in the network to align and for information to be efficiently transferred. We demonstrate that changes in synchrony and phase difference can be used to set up or abolish information transfer in a network of cortical circuits.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
United States 1 2%
Unknown 48 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 34%
Student > Ph. D. Student 15 30%
Student > Master 4 8%
Student > Doctoral Student 2 4%
Other 1 2%
Other 4 8%
Unknown 7 14%
Readers by discipline Count As %
Neuroscience 19 38%
Physics and Astronomy 4 8%
Engineering 4 8%
Computer Science 3 6%
Psychology 3 6%
Other 8 16%
Unknown 9 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 February 2017.
All research outputs
#14,429,961
of 23,577,761 outputs
Outputs from Frontiers in Computational Neuroscience
#643
of 1,380 outputs
Outputs of similar age
#224,974
of 423,185 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#13
of 26 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,380 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,185 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.