↓ Skip to main content

Quantification of Head Movement Predictability and Implications for Suppression of Vestibular Input during Locomotion

Overview of attention for article published in Frontiers in Computational Neuroscience, June 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quantification of Head Movement Predictability and Implications for Suppression of Vestibular Input during Locomotion
Published in
Frontiers in Computational Neuroscience, June 2017
DOI 10.3389/fncom.2017.00047
Pubmed ID
Authors

Paul R. MacNeilage, Stefan Glasauer

Abstract

Achieved motor movement can be estimated using both sensory and motor signals. The value of motor signals for estimating movement should depend critically on the stereotypy or predictability of the resulting actions. As predictability increases, motor signals become more reliable indicators of achieved movement, so weight attributed to sensory signals should decrease accordingly. Here we describe a method to quantify this predictability for head movement during human locomotion by measuring head motion with an inertial measurement unit (IMU), and calculating the variance explained by the mean movement over one stride, i.e., a metric similar to the coefficient of determination. Predictability exhibits differences across activities, being most predictable during running, and changes over the course of a stride, being least predictable around the time of heel-strike and toe-off. In addition to quantifying predictability, we relate this metric to sensory-motor weighting via a statistically optimal model based on two key assumptions: (1) average head movement provides a conservative estimate of the efference copy prediction, and (2) noise on sensory signals scales with signal magnitude. The model suggests that differences in predictability should lead to changes in the weight attributed to vestibular sensory signals for estimating head movement. In agreement with the model, prior research reports that vestibular perturbations have greatest impact at the time points and during activities where high vestibular weight is predicted. Thus, we propose a unified explanation for time-and activity-dependent modulation of vestibular effects that was lacking previously. Furthermore, the proposed predictability metric constitutes a convenient general method for quantifying any kind of kinematic variability. The probabilistic model is also general; it applies to any situation in which achieved movement is estimated from both motor signals and zero-mean sensory signals with signal-dependent noise.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 27%
Student > Master 4 12%
Researcher 3 9%
Professor 3 9%
Other 1 3%
Other 2 6%
Unknown 11 33%
Readers by discipline Count As %
Engineering 6 18%
Agricultural and Biological Sciences 3 9%
Computer Science 3 9%
Medicine and Dentistry 3 9%
Neuroscience 2 6%
Other 2 6%
Unknown 14 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 June 2017.
All research outputs
#12,982,402
of 22,979,862 outputs
Outputs from Frontiers in Computational Neuroscience
#468
of 1,348 outputs
Outputs of similar age
#150,260
of 317,348 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#17
of 41 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,348 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,348 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.