↓ Skip to main content

The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

Overview of attention for article published in Frontiers in Computational Neuroscience, September 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
7 X users

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems
Published in
Frontiers in Computational Neuroscience, September 2017
DOI 10.3389/fncom.2017.00088
Pubmed ID
Authors

Wilfredo Blanco, Richard Bertram, Joël Tabak

Abstract

Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the "intermediate neurons." We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes that occur during development that may be observable even in actual neural systems where these changes are convoluted with changes in synaptic connectivity and intrinsic neural plasticity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 43%
Researcher 2 14%
Lecturer 1 7%
Professor 1 7%
Student > Doctoral Student 1 7%
Other 2 14%
Unknown 1 7%
Readers by discipline Count As %
Neuroscience 5 36%
Computer Science 2 14%
Psychology 2 14%
Engineering 2 14%
Social Sciences 1 7%
Other 1 7%
Unknown 1 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 November 2017.
All research outputs
#7,029,007
of 23,003,906 outputs
Outputs from Frontiers in Computational Neuroscience
#374
of 1,353 outputs
Outputs of similar age
#113,047
of 321,103 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#14
of 29 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 1,353 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,103 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.