↓ Skip to main content

Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study

Overview of attention for article published in Frontiers in Computational Neuroscience, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
17 X users
facebook
1 Facebook page

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study
Published in
Frontiers in Computational Neuroscience, October 2017
DOI 10.3389/fncom.2017.00089
Pubmed ID
Authors

Mauro Ursino, Andrea Crisafulli, Giuseppe di Pellegrino, Elisa Magosso, Cristiano Cuppini

Abstract

The brain integrates information from different sensory modalities to generate a coherent and accurate percept of external events. Several experimental studies suggest that this integration follows the principle of Bayesian estimate. However, the neural mechanisms responsible for this behavior, and its development in a multisensory environment, are still insufficiently understood. We recently presented a neural network model of audio-visual integration (Neural Computation, 2017) to investigate how a Bayesian estimator can spontaneously develop from the statistics of external stimuli. Model assumes the presence of two unimodal areas (auditory and visual) topologically organized. Neurons in each area receive an input from the external environment, computed as the inner product of the sensory-specific stimulus and the receptive field synapses, and a cross-modal input from neurons of the other modality. Based on sensory experience, synapses were trained via Hebbian potentiation and a decay term. Aim of this work is to improve the previous model, including a more realistic distribution of visual stimuli: visual stimuli have a higher spatial accuracy at the central azimuthal coordinate and a lower accuracy at the periphery. Moreover, their prior probability is higher at the center, and decreases toward the periphery. Simulations show that, after training, the receptive fields of visual and auditory neurons shrink to reproduce the accuracy of the input (both at the center and at the periphery in the visual case), thus realizing the likelihood estimate of unimodal spatial position. Moreover, the preferred positions of visual neurons contract toward the center, thus encoding the prior probability of the visual input. Finally, a prior probability of the co-occurrence of audio-visual stimuli is encoded in the cross-modal synapses. The model is able to simulate the main properties of a Bayesian estimator and to reproduce behavioral data in all conditions examined. In particular, in unisensory conditions the visual estimates exhibit a bias toward the fovea, which increases with the level of noise. In cross modal conditions, the SD of the estimates decreases when using congruent audio-visual stimuli, and a ventriloquism effect becomes evident in case of spatially disparate stimuli. Moreover, the ventriloquism decreases with the eccentricity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 27%
Student > Doctoral Student 5 14%
Student > Master 4 11%
Researcher 3 8%
Lecturer 1 3%
Other 5 14%
Unknown 9 24%
Readers by discipline Count As %
Psychology 10 27%
Neuroscience 5 14%
Engineering 3 8%
Agricultural and Biological Sciences 3 8%
Business, Management and Accounting 2 5%
Other 5 14%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2021.
All research outputs
#4,153,081
of 24,417,958 outputs
Outputs from Frontiers in Computational Neuroscience
#188
of 1,415 outputs
Outputs of similar age
#70,924
of 327,193 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#6
of 28 outputs
Altmetric has tracked 24,417,958 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,415 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,193 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.