↓ Skip to main content

Relating the Structure of Noise Correlations in Macaque Primary Visual Cortex to Decoder Performance

Overview of attention for article published in Frontiers in Computational Neuroscience, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Relating the Structure of Noise Correlations in Macaque Primary Visual Cortex to Decoder Performance
Published in
Frontiers in Computational Neuroscience, March 2018
DOI 10.3389/fncom.2018.00012
Pubmed ID
Authors

Or P. Mendels, Maoz Shamir

Abstract

Noise correlations in neuronal responses can have a strong influence on the information available in large populations. In addition, the structure of noise correlations may have a great impact on the utility of different algorithms to extract this information that may depend on the specific algorithm, and hence may affect our understanding of population codes in the brain. Thus, a better understanding of the structure of noise correlations and their interplay with different readout algorithms is required. Here we use eigendecomposition to investigate the structure of noise correlations in populations of about 50-100 simultaneously recorded neurons in the primary visual cortex of anesthetized monkeys, and we relate this structure to the performance of two common decoders: the population vector and the optimal linear estimator. Our analysis reveals a non-trivial correlation structure, in which the eigenvalue spectrum is composed of several distinct large eigenvalues that represent different shared modes of fluctuation extending over most of the population, and a semi-continuous tail. The largest eigenvalue represents a uniform collective mode of fluctuation. The second and third eigenvalues typically show either a clear functional (i.e., dependent on the preferred orientation of the neurons) or spatial structure (i.e., dependent on the physical position of the neurons). We find that the number of shared modes increases with the population size, being roughly 10% of that size. Furthermore, we find that the noise in each of these collective modes grows linearly with the population. This linear growth of correlated noise power can have limiting effects on the utility of averaging neuronal responses across large populations, depending on the readout. Specifically, the collective modes of fluctuation limit the accuracy of the population vector but not of the optimal linear estimator.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 45%
Researcher 4 14%
Student > Master 4 14%
Professor 1 3%
Student > Doctoral Student 1 3%
Other 1 3%
Unknown 5 17%
Readers by discipline Count As %
Neuroscience 12 41%
Agricultural and Biological Sciences 6 21%
Engineering 2 7%
Physics and Astronomy 1 3%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 6 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 March 2018.
All research outputs
#14,376,243
of 23,023,224 outputs
Outputs from Frontiers in Computational Neuroscience
#694
of 1,355 outputs
Outputs of similar age
#188,733
of 332,019 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#15
of 25 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,355 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,019 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.