↓ Skip to main content

A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics

Overview of attention for article published in Frontiers in Computational Neuroscience, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
18 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics
Published in
Frontiers in Computational Neuroscience, July 2018
DOI 10.3389/fncom.2018.00058
Pubmed ID
Authors

Eric Hu, Adam Mergenthal, Clayton S. Bingham, Dong Song, Jean-Marie Bouteiller, Theodore W. Berger

Abstract

In synapses, calcium is required for modulating synaptic transmission, plasticity, synaptogenesis, and synaptic pruning. The regulation of calcium dynamics within neurons involves cellular mechanisms such as synaptically activated channels and pumps, calcium buffers, and calcium sequestrating organelles. Many experimental studies tend to focus on only one or a small number of these mechanisms, as technical limitations make it difficult to observe all features at once. Computational modeling enables incorporation of many of these properties together, allowing for more complete and integrated studies. However, the scale of existing detailed models is often limited to synaptic and dendritic compartments as the computational burden rapidly increases when these models are integrated in cellular or network level simulations. In this article we present a computational model of calcium dynamics at the postsynaptic spine of a CA1 pyramidal neuron, as well as a methodology that enables its implementation in multi-scale, large-scale simulations. We first present a mechanistic model that includes individually validated models of various components involved in the regulation of calcium at the spine. We validated our mechanistic model by comparing simulated calcium levels to experimental data found in the literature. We performed additional simulations with the mechanistic model to determine how the simulated calcium activity varies with respect to presynaptic-postsynaptic stimulation intervals and spine distance from the soma. We then developed an input-output (IO) model that complements the mechanistic calcium model and provide a computationally efficient representation for use in larger scale modeling studies; we show the performance of the IO model compared to the mechanistic model in terms of accuracy and speed. The models presented here help achieve two objectives. First, the mechanistic model provides a comprehensive platform to describe spine calcium dynamics based on individual contributing factors. Second, the IO model is trained on the main dynamical features of the mechanistic model and enables nonlinear spine calcium modeling on the cell and network level simulation scales. Utilizing both model representations provide a multi-level perspective on calcium dynamics, originating from the molecular interactions at spines and propagating the effects to higher levels of activity involved in network behavior.

X Demographics

X Demographics

The data shown below were collected from the profiles of 18 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 22%
Researcher 3 11%
Professor 3 11%
Professor > Associate Professor 2 7%
Other 1 4%
Other 2 7%
Unknown 10 37%
Readers by discipline Count As %
Neuroscience 5 19%
Agricultural and Biological Sciences 3 11%
Engineering 3 11%
Computer Science 2 7%
Physics and Astronomy 1 4%
Other 2 7%
Unknown 11 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 December 2019.
All research outputs
#3,782,491
of 25,847,449 outputs
Outputs from Frontiers in Computational Neuroscience
#168
of 1,475 outputs
Outputs of similar age
#69,810
of 342,792 outputs
Outputs of similar age from Frontiers in Computational Neuroscience
#5
of 30 outputs
Altmetric has tracked 25,847,449 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,475 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,792 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.