↓ Skip to main content

Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

Overview of attention for article published in Frontiers in Neurology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry
Published in
Frontiers in Neurology, January 2013
DOI 10.3389/fneur.2013.00155
Pubmed ID
Authors

Elvan Ceyhan, Tomoyuki Nishino, Dimitrios Alexopolous, Richard D. Todd, Kelly N. Botteron, Michael I. Miller, J. Tilak Ratnanather

Abstract

It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 10%
Germany 1 10%
Unknown 8 80%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 30%
Student > Ph. D. Student 2 20%
Librarian 1 10%
Student > Bachelor 1 10%
Student > Master 1 10%
Other 1 10%
Unknown 1 10%
Readers by discipline Count As %
Psychology 3 30%
Neuroscience 3 30%
Medicine and Dentistry 2 20%
Engineering 1 10%
Unknown 1 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 October 2013.
All research outputs
#20,205,224
of 22,725,280 outputs
Outputs from Frontiers in Neurology
#8,638
of 11,632 outputs
Outputs of similar age
#248,792
of 280,762 outputs
Outputs of similar age from Frontiers in Neurology
#117
of 210 outputs
Altmetric has tracked 22,725,280 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,632 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,762 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.