↓ Skip to main content

Different Evolutionary Origins for the Reach and the Grasp: An Explanation for Dual Visuomotor Channels in Primate Parietofrontal Cortex

Overview of attention for article published in Frontiers in Neurology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
82 Dimensions

Readers on

mendeley
128 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Different Evolutionary Origins for the Reach and the Grasp: An Explanation for Dual Visuomotor Channels in Primate Parietofrontal Cortex
Published in
Frontiers in Neurology, January 2013
DOI 10.3389/fneur.2013.00208
Pubmed ID
Authors

Jenni M. Karl, Ian Q. Whishaw

Abstract

The Dual Visuomotor Channel Theory proposes that manual prehension consists of two temporally integrated movements, each subserved by distinct visuomotor pathways in occipitoparietofrontal cortex. The Reach is mediated by a dorsomedial pathway and transports the hand in relation to the target's extrinsic properties (i.e., location and orientation). The Grasp is mediated by a dorsolateral pathway and opens, preshapes, and closes the hand in relation to the target's intrinsic properties (i.e., size and shape). Here, neuropsychological, developmental, and comparative evidence is reviewed to show that the Reach and the Grasp have different evolutionary origins. First, the removal or degradation of vision causes prehension to decompose into its constituent Reach and Grasp components, which are then executed in sequence or isolation. Similar decomposition occurs in optic ataxic patients following cortical injury to the Reach and the Grasp pathways and after corticospinal tract lesions in non-human primates. Second, early non-visual PreReach and PreGrasp movements develop into mature Reach and Grasp movements but are only integrated under visual control after a prolonged developmental period. Third, comparative studies reveal many similarities between stepping movements and the Reach and between food handling movements and the Grasp, suggesting that the Reach and the Grasp are derived from different evolutionary antecedents. The evidence is discussed in relation to the ideas that dual visuomotor channels in primate parietofrontal cortex emerged as a result of distinct evolutionary origins for the Reach and the Grasp; that foveated vision in primates serves to integrate the Reach and the Grasp into a single prehensile act; and, that flexible recombination of discrete Reach and Grasp movements under various forms of sensory and cognitive control can produce adaptive behavior.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 128 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 2%
Sweden 1 <1%
Netherlands 1 <1%
Belgium 1 <1%
Canada 1 <1%
Unknown 121 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 30 23%
Researcher 21 16%
Student > Master 9 7%
Professor 8 6%
Student > Bachelor 8 6%
Other 25 20%
Unknown 27 21%
Readers by discipline Count As %
Neuroscience 34 27%
Agricultural and Biological Sciences 17 13%
Psychology 15 12%
Medicine and Dentistry 11 9%
Engineering 10 8%
Other 11 9%
Unknown 30 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2019.
All research outputs
#17,708,224
of 22,738,543 outputs
Outputs from Frontiers in Neurology
#7,007
of 11,646 outputs
Outputs of similar age
#210,242
of 280,808 outputs
Outputs of similar age from Frontiers in Neurology
#84
of 210 outputs
Altmetric has tracked 22,738,543 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,646 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,808 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.