↓ Skip to main content

Three-Class Differential Diagnosis among Alzheimer Disease, Frontotemporal Dementia, and Controls

Overview of attention for article published in Frontiers in Neurology, May 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

twitter
15 X users
facebook
1 Facebook page

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Three-Class Differential Diagnosis among Alzheimer Disease, Frontotemporal Dementia, and Controls
Published in
Frontiers in Neurology, May 2014
DOI 10.3389/fneur.2014.00071
Pubmed ID
Authors

Pradeep Reddy Raamana, Howard Rosen, Bruce Miller, Michael W. Weiner, Lei Wang, Mirza Faisal Beg

Abstract

Biomarkers derived from brain magnetic resonance (MR) imaging have promise in being able to assist in the clinical diagnosis of brain pathologies. These have been used in many studies in which the goal has been to distinguish between pathologies such as Alzheimer's disease and healthy aging. However, other dementias, in particular, frontotemporal dementia, also present overlapping pathological brain morphometry patterns. Hence, a classifier that can discriminate morphometric features from a brain MRI from the three classes of normal aging, Alzheimer's disease (AD), and frontotemporal dementia (FTD) would offer considerable utility in aiding in correct group identification. Compared to the conventional use of multiple pair-wise binary classifiers that learn to discriminate between two classes at each stage, we propose a single three-way classification system that can discriminate between three classes at the same time. We present a novel classifier that is able to perform a three-class discrimination test for discriminating among AD, FTD, and normal controls (NC) using volumes, shape invariants, and local displacements (three features) of hippocampi and lateral ventricles (two structures times two hemispheres individually) obtained from brain MR images. In order to quantify its utility in correct discrimination, we optimize the three-class classifier on a training set and evaluate its performance using a separate test set. This is a novel, first-of-its-kind comparative study of multiple individual biomarkers in a three-class setting. Our results demonstrate that local atrophy features in lateral ventricles offer the potential to be a biomarker in discriminating among AD, FTD, and NC in a three-class setting for individual patient classification.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 22%
Researcher 14 17%
Student > Master 10 12%
Student > Postgraduate 6 7%
Professor 4 5%
Other 15 18%
Unknown 15 18%
Readers by discipline Count As %
Neuroscience 16 20%
Medicine and Dentistry 15 18%
Psychology 10 12%
Computer Science 5 6%
Agricultural and Biological Sciences 3 4%
Other 10 12%
Unknown 23 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 March 2021.
All research outputs
#4,229,411
of 25,867,969 outputs
Outputs from Frontiers in Neurology
#3,675
of 14,797 outputs
Outputs of similar age
#39,056
of 242,924 outputs
Outputs of similar age from Frontiers in Neurology
#6
of 62 outputs
Altmetric has tracked 25,867,969 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 14,797 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,924 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.