↓ Skip to main content

Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions

Overview of attention for article published in Frontiers in Neurology, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
82 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions
Published in
Frontiers in Neurology, April 2015
DOI 10.3389/fneur.2015.00072
Pubmed ID
Authors

Charles E. Needham, David Ritzel, Gregory T. Rule, Suthee Wiri, Leanne Young

Abstract

Over the past several years, we have noticed an increase in the number of blast injury studies published in peer-reviewed biomedical journals that have utilized improperly conceived experiments. Data from these studies will lead to false conclusions and more confusion than advancement in the understanding of blast injury, particularly blast neurotrauma. Computational methods to properly characterize the blast environment have been available for decades. These methods, combined with a basic understanding of blast wave phenomena, enable researchers to extract useful information from well-documented experiments. This basic understanding must include the differences and interrelationships of static pressure, dynamic pressure, reflected pressure, and total or stagnation pressure in transient shockwave flows, how they relate to loading of objects, and how they are properly measured. However, it is critical that the research community effectively overcomes the confusion that has been compounded by a misunderstanding of the differences between the loading produced by a free field explosive blast and loading produced by a conventional shock tube. The principles of blast scaling have been well established for decades and when properly applied will do much to repair these problems. This paper provides guidance regarding proper experimental methods and offers insights into the implications of improperly designed and executed tests. Through application of computational methods, useful data can be extracted from well-documented historical tests, and future work can be conducted in a way to maximize the effectiveness and use of valuable biological test data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 72 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 22%
Researcher 10 14%
Student > Bachelor 6 8%
Student > Doctoral Student 5 7%
Student > Master 5 7%
Other 10 14%
Unknown 21 29%
Readers by discipline Count As %
Engineering 26 36%
Medicine and Dentistry 6 8%
Neuroscience 5 7%
Agricultural and Biological Sciences 5 7%
Chemistry 2 3%
Other 6 8%
Unknown 23 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 April 2016.
All research outputs
#14,220,809
of 22,799,071 outputs
Outputs from Frontiers in Neurology
#5,742
of 11,669 outputs
Outputs of similar age
#139,716
of 264,934 outputs
Outputs of similar age from Frontiers in Neurology
#38
of 77 outputs
Altmetric has tracked 22,799,071 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,669 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.4. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,934 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.