↓ Skip to main content

Diurnal Fluctuations of Verticality Perception – Lesser Precision Immediately after Waking up in the Morning

Overview of attention for article published in Frontiers in Neurology, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diurnal Fluctuations of Verticality Perception – Lesser Precision Immediately after Waking up in the Morning
Published in
Frontiers in Neurology, September 2015
DOI 10.3389/fneur.2015.00195
Pubmed ID
Authors

Aline J. Schwarz, Dominik Straumann, Alexander A. Tarnutzer

Abstract

Internal estimates of direction of gravity are continuously updated by integrating vestibular, visual and proprioceptive input, and prior experience about upright position. Prolonged static roll-tilt biases perceived direction of gravity by adaptation of peripheral sensors and central structures. We hypothesized that in the morning after sleep, estimates of direction of gravity [assessed by the subjective visual vertical (SVV)] are less precise than in the evening because of adaptation to horizontal body position and lack of prior knowledge about upright position. Using a mobile SVV-measuring device, verticality perception was assessed in seven healthy human subjects on 7 days in the morning immediately after waking up and in the evening while sitting upright. Paired t-tests were applied to analyze diurnal changes in SVV trial-to-trial variability. Average SVV variability in the morning was significantly larger than in the evening (1.9 ± 0.6° vs. 0.9 ± 0.3°, p = 0.002). SVV accuracy was not significantly different (-1.2 ± 0.9° vs. -0.4 ± 0.4°, morning vs. evening, p = 0.058) and was within normal range (±2.3°) in all but one subject. A good night's sleep has a profound effect on the brain's ability to estimate direction of gravity. Resulting variability was significantly worse after waking up reaching values more than twice as large as in the evening while there was no significant impact on SVV accuracy. We hypothesize that lacking prior knowledge, adaptation of peripheral sensors, and lower levels of arousal and cerebral metabolism contribute to such impoverished estimates. Our observations have considerable clinical impact as they indicate an increased risk for falls and fall-related injuries in the morning.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 18%
Researcher 5 18%
Student > Bachelor 3 11%
Other 2 7%
Unspecified 2 7%
Other 3 11%
Unknown 8 29%
Readers by discipline Count As %
Medicine and Dentistry 6 21%
Psychology 5 18%
Nursing and Health Professions 3 11%
Unspecified 2 7%
Social Sciences 2 7%
Other 1 4%
Unknown 9 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2015.
All research outputs
#14,236,953
of 22,826,360 outputs
Outputs from Frontiers in Neurology
#5,751
of 11,712 outputs
Outputs of similar age
#138,241
of 267,079 outputs
Outputs of similar age from Frontiers in Neurology
#29
of 52 outputs
Altmetric has tracked 22,826,360 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,712 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,079 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.