↓ Skip to main content

The Effects of External Jugular Compression Applied during Head Impact Exposure on Longitudinal Changes in Brain Neuroanatomical and Neurophysiological Biomarkers: A Preliminary Investigation

Overview of attention for article published in Frontiers in Neurology, June 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#5 of 11,801)
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
79 news outlets
blogs
2 blogs
twitter
20 X users
patent
1 patent
facebook
1 Facebook page

Readers on

mendeley
161 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Effects of External Jugular Compression Applied during Head Impact Exposure on Longitudinal Changes in Brain Neuroanatomical and Neurophysiological Biomarkers: A Preliminary Investigation
Published in
Frontiers in Neurology, June 2016
DOI 10.3389/fneur.2016.00074
Pubmed ID
Authors

Gregory D. Myer, Weihong Yuan, Kim D. Barber Foss, David Smith, Mekibib Altaye, Amit Reches, James Leach, Adam W. Kiefer, Jane C. Khoury, Michal Weiss, Staci Thomas, Chris Dicesare, Janet Adams, Paul J. Gubanich, Amir Geva, Joseph F. Clark, William P. Meehan, Jason P. Mihalik, Darcy Krueger

Abstract

Utilize a prospective in vivo clinical trial to evaluate the potential for mild neck compression applied during head impact exposure to reduce anatomical and physiological biomarkers of brain injury. This project utilized a prospective randomized controlled trial to evaluate effects of mild jugular vein (neck) compression (collar) relative to controls (no collar) during a competitive hockey season (males; 16.3 ± 1.2 years). The collar was designed to mildly compress the jugular vein bilaterally with the goal to increase intracranial blood volume to reduce risk of brain slosh injury during head impact exposure. Helmet sensors were used to collect daily impact data in excess of 20 g (games and practices) and the primary outcome measures, which included changes in white matter (WM) microstructure, were assessed by diffusion tensor imaging (DTI). Specifically, four DTI measures: fractional anisotropy, mean diffusivity (MD), axial diffusivity, and radial diffusivity (RD) were used in the study. These metrics were analyzed using the tract-based Spatial Statistics (TBSS) approach - a voxel-based analysis. In addition, electroencephalography-derived event-related potentials were used to assess changes in brain network activation (BNA) between study groups. For athletes not wearing the collar, DTI measures corresponding to a disruption of WM microstructure, including MD and RD, increased significantly from pre-season to mid-season (p < 0.05). Athletes wearing the collar did not show a significant change in either MD or RD despite similar accumulated linear accelerations from head impacts (p > 0.05). In addition to these anatomical findings, electrophysiological network analysis of the degree of congruence in the network electrophysiological activation pattern demonstrated concomitant changes in brain network dynamics in the non-collar group only (p < 0.05). Similar to the DTI findings, the increased change in BNA score in the non-collar relative to the collar group was statistically significant (p < 0.01). Changes in DTI outcomes were also directly correlated with altered brain network dynamics (r = 0.76; p < 0.05) as measured by BNA. Group differences in the longitudinal changes in both neuroanatomical and electrophysiological measures, as well as the correlation between the measures, provide initial evidence indicating that mild jugular vein compression may have reduced alterations in the WM response to head impacts during a competitive hockey season. The data indicate sport-related alterations in WM microstructure were ameliorated by application of jugular compression during head impact exposure. These results may lead to a novel line of research inquiry to evaluate the effects of protecting the brain from sports-related head impacts via optimized intracranial fluid dynamics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 161 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Spain 1 <1%
United States 1 <1%
Unknown 158 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 21 13%
Student > Ph. D. Student 20 12%
Researcher 17 11%
Student > Master 15 9%
Other 13 8%
Other 28 17%
Unknown 47 29%
Readers by discipline Count As %
Medicine and Dentistry 28 17%
Sports and Recreations 23 14%
Psychology 12 7%
Neuroscience 10 6%
Nursing and Health Professions 7 4%
Other 24 15%
Unknown 57 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 644. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 July 2021.
All research outputs
#27,630
of 22,876,619 outputs
Outputs from Frontiers in Neurology
#5
of 11,801 outputs
Outputs of similar age
#612
of 340,764 outputs
Outputs of similar age from Frontiers in Neurology
#1
of 56 outputs
Altmetric has tracked 22,876,619 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,801 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,764 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.